Comprendre

Auteur: Gary Quinsac

Réferentiels et transformations

Auteur: Gary Quinsac

Systèmes de coordonnées

Auteur: Gary Quinsac

Généralités

Afin de déterminer la position et l'orientation d'un objet dans l'espace, on fait appel aux systèmes de coordonnées. Dans cette partie, il ne faudra pas confondre les notions de référentiel et système de coordonnées. Un système de coordonnées est notamment défini par son centre (on parle de référentiels géocentrique ou héliocentrique), son plan de référence (équatorial, écliptique) et ses axes. En ce qui concerne les systèmes de coordonnées, on a pour habitude d'utiliser les suivants :

Système de coordonnées inertiel

Un référentiel inertiel (ou galiléen) est un référentiel dans lequel le principe d'inertie est vérifié. Tout corps libre est en mouvement de translation rectiligne uniforme ou au repos. Tout référentiel en mouvement de translation rectiligne et uniforme par rapport à un référentiel inertiel est lui-même inertiel. Les lois de la mécanique sont invariantes par changement de référentiel inertiel. On a l'habitude de distinguer un référentiel considéré comme fixe par rapport à un objet en rotation, comme le repère terrestre, avec un repère dont les axes sont fixés par rapport à une position absolue.

remarqueTermes d'inertie

Dans un référentiel non inertiel, par exemple animé d’un mouvement accéléré par rapport à un référentiel galiléen, il faut faire intervenir les termes d’inertie (comme détaillé par la suite). Ces termes se traduisent par des pseudo-forces, qui se distinguent des forces prises en compte dans un référentiel galiléen car elles ne sont pas associées à une interaction entre le corps dont on étudie le mouvement et un autre corps.


Systèmes de coordonnées célestes

En astronomie, on utilise habituellement les repères cylindriques et sphériques amputés de leur coordonnée de distance. Pour des raisons pratiques, on suppose souvent que les objets observés se situent à des positions fixes à l'intérieur de la sphère céleste, à condition que leur distance soit suffisante.

Un système de coordonnées céleste a pour fonction de déterminer une position dans le ciel. Il existe plusieurs systèmes, utilisant une grille de coordonnées projetée sur la sphère céleste, de manière analogue aux systèmes de coordonnées géographiques utilisés à la surface de la Terre. Les systèmes de coordonnées célestes diffèrent seulement dans le choix du plan de référence, qui divise le ciel en deux hémisphères le long d'un grand cercle (le plan de référence du système de coordonnées géographiques est l'équateur terrestre). Chaque système est nommé d'après son plan de référence.

Système de coordonnées horizontales

Coordonnées horizontales
images/coordonnees-horizontales.jpg
Les coordonnées horizontales locales sont la hauteur (h) et l'azimut (A). La hauteur varie de 0° (horizon) jusqu'à 90° (zénith) et l'azimut est mesuré sur le plan horizontal à partir du Nord (N). Un objet de hauteur négative n'est pas visible depuis le lieu d'observation.
Crédit : Wikipedia

Le système de cordonnées horizontales, également appelé système local ou système de coordonnées alt-azimutales, est un système de coordonnées célestes utilisé en astronomie par un observateur au sol. Le système, centré sur l'observateur, sépare le ciel en deux hémisphères : l'un situé au-dessus de l'observateur et l'autre situé au-dessous, caché par le sol. Le cercle séparant les deux hémisphères, appelé horizon céleste, situe le plan horizontal. L'altitude (ou élévation, "h") et l'azimut (A), qui constituent les deux principales coordonnées de ce système, sont définis à partir de ce plan.

Ce système de coordonnées présente l'avantage d'être simple et local. Il est facile à établir à un endroit donné à partir du moment où l'observateur sait où se trouve l'un des points cardinaux. C'est la raison pour laquelle il est particulièrement utilisé par les télescopes au sol à monture azimutale, c'est à dire l'essentiel des télescopes les plus récents.

Système de coordonnées équatoriales

Coordonnées équatoriales projetées sur la sphère céleste
images/coordonnees-equatoriales-sphere-celeste.PNG
Un système équatorial est projeté sur la sphère céleste. Les longitude (α) et latitude (δ) d'un objet sont indiquées.
Crédit : Gary Quinsac

Le système de coordonnées équatoriales est un système de coordonnées célestes dont les valeurs sont indépendantes de la position de l'observateur. Ceci est également vrai pour les systèmes de coordoonées écliptiques et galactiques. Ce système utilise comme plan de référence la projection de l'équateur de la Terre sur la sphère céleste. Cette projection s'appelle l'équateur céleste. Elle divise le ciel en deux hémisphères, chacun ayant comme axe de référence la projection d'un pôle terrestre, perpendiculaire à l'équateur céleste. À partir de ces divisions, le système permet d'établir deux coordonnées angulaires : l'ascension droite et la déclinaison.

Système de coordonnées écliptiques

Coordonnées écliptiques projetées sur la sphère céleste-
images/coordonnees-ecliptiques-sphere-celeste.PNG
Un système écliptique est projeté sur la sphère céleste. Les longitude (λ) et latitude (β) d'un objet sont indiquées.
Crédit : Gary Quinsac

Le système de coordonnées écliptiques est un système de coordonnées adapté aux objets célestes : il utilise le plan de l'écliptique (plan de l'orbite de la Terre autour du Soleil) comme plan de référence. Ce plan fait un angle d'approximativement 23° avec le plan équatorial terrestre, du fait de l'inclinaison de l'axe de rotation de la Terre. Ce repère est un système sphérique à deux dimensions.

Ce système peut être centré sur la Terre, le Soleil ou tout autre corps. Il est particulièrement utile pour les objets situés dans le système solaire.

Système de coordonnées galactiques

Coordonnées galactiques projetées sur la sphère céleste
images/coordonnees-galactiques-sphere-celeste.PNG
Un système galactique est projeté sur la sphère céleste. Les longitude (l) et latitude (b) d'un objet sont indiquées.

Les coordonnées galactiques sont adaptées aux objets situés dans notre galaxie et non situés dans le voisinage proche du Soleil. Les coordonnées galactiques sont un repérage effectué à l'aide d'une latitude et d'une longitude définies de telle sorte que le plan galactique correspond à l'équateur, et l'origine des longitudes corresponde au centre galactique. Le système de coordonnées galactiques est un système de coordonnées célestes qui prend en compte la rotation de la Galaxie sur elle-même. On parle ici aussi de longitude et de latitude galactiques. Le plan de référence de ce système est le plan de la Galaxie centré sur le centre galactique. Le pôle nord galactique a été défini par convention dans le repère équatorial par une ascension droite de 12 h 51 min 26,282 s et une déclinaison de 27°07′42.01″. Dans ce plan, la direction de référence de la mesure est la direction du centre de la Galaxie.

activiteAppliquette interactive

Une appliquette interactive est disponible ici. Elle permet d'afficher les trois principaux systèmes de coordonnées célestes en 3D.

Résumé des propriétés des systèmes de coordonnées usuels
Système de coordonnéesOriginePlan fondamentalPôlesCoordonnéesDirection principale
LatitudeLongitude
HorizontalObservateurHorizonZénith / NadirÉlévationAzimuth (A)Point nord
ÉquatorialCentre de la Terre (géocentrique) / du Soleil (héliocentrique)Équateur célestePôles célestesDéclinaison (δ)Ascension droite (α)Point vernal
ÉcliptiqueÉcliptiquePôles écliptiquesLatitude écliptique (β)Longitude écliptique (λ)
GalactiqueCentre du SoleilPlan galactiquePôles galactiquesLatitude galactique (b)Longitude galactique (l)Centre galactique

Systèmes de coordonnées spatiaux

Dans le cadre de l'analyse de l'attitude et de l'orbite d'un satellite, certains référentiels sont particulièrement utilisés. Les plus importants d'entre eux sont présentés dans cette partie.

activiteAppliquette interactive

Une appliquette interactive est disponible ici. Elle permet de visualiser dans l'espace une partie des repères spatiaux qui vous sont présentés dans cette partie.

Référentiel héliocentrique

Le référentiel de Kepler (ou référentiel héliocentrique) est le référentiel centré sur le centre de masse du Soleil et dont les axes pointent vers des étoiles fixes. Ce référentiel inertiel est utilisé pour les missions interplanétaires. Ces étoiles sont suffisamment lointaines pour qu'elles apparaissent fixes aux échelles de temps considérées.

Référentiel géocentrique (ECI)

Le référentiel géocentrique ("Earth Centered Inertial"ou ECI en anglais) est un référentiel dont l'origine est le centre de la Terre et dont les trois axes pointent également vers des étoiles fixes. L'origine du système se situe au centre géométrique de la Terre, l'axe Z est aligné avec le pôle nord, l'axe X pointe vers le point vernal et l'axe Y complète le trièdre. D'autres systèmes de ce type existent, définis par rapport à d'autres directions. La bonne connaissance de la position des étoiles permet de déterminer l'orientation du satellite dans ce référentiel par observation de ces étoiles.

complementPoint vernal "vrai"

Le point vernal "vrai" se déplace chaque année en raison de la précession des équinoxes (mouvement de l'axe de rotation de la Terre) et du lent déplacement des étoiles. De ce fait on définit un point vernal fixe conventionnel (celui du 1er janvier 2000 pour le repère J2000).

Référentiel terrestre (ECEF)

Le référentiel terrestre ("Earth-Centered, Earth-Fixed" ou ECEF en anglais) est un référentiel centré sur le centre de masse de la Terre et dont les trois axes sont liés au globe terrestre. Ce référentiel est en mouvement de rotation pure dans le référentiel géocentrique. L'axe vecteur(Z) coïncide avec l'axe de rotation de la Terre et les axes vecteur(X) et vecteur(Y) sont fixés par rapport à la Terre.

remarqueRemarque

Le référentiel géocentrique se distingue du référentiel terrestre, dont l'origine est prise au centre de la Terre, mais dont les axes sont attachés au globe terrestre. Il est également différent du référentiel héliocentrique, dont les axes pointent vers des étoiles lointaines mais dont l'origine est prise au centre du Soleil. Ainsi, le référentiel terrestre est en rotation dans le référentiel géocentrique, lui-même en translation circulaire dans le référentiel héliocentrique. La position et l'orientation d'un satellite par rapport à un tel système doivent être connues afin de maintenir une communication avec le sol ou de réaliser de la détection terrestre.

Repère orbital

Les repères orbitaux sont liés à l'orbite du satellite et à sa position sur cette orbite. Ils tournent à mesure que le satellite orbite autour de la Terre afin qu'un axe pointe dans une direction particulière, tandis que les deux autres sont normaux. On peut citer différents repères orbitaux. Généralement, l'axe vecteur(Z) pointe vers le nadir et l'axe vecteur(Y) est normal au plan orbital.

Pour les satellites pointant la terre, l'orientation/vitesse angulaire du corps du satellite est définie par rapport à un repère fixé sur l'orbite.

Référentiel satellite

Le référentiel du satellite est défini par le corps du satellite. On a l'habitude de définir le repère satellite avec l'orientation d'un élément de navigation essentiel comprenant les capteurs d'attitude les plus critiques et les instruments de la charge utile. Le SCA utilise une combinaison de capteurs et d'actionneurs pour maintenir l'orientation et la vitesse angulaire du référentiel du satellite par rapport à un repère extérieur de référence. Celui-ci dépend généralement du type de pointage requis par la mission (inertiel, solaire, nadir etc).

Repère instruments

Un repère instrument est aligné suivant les directions caractéristiques de l'instrument. Ces repères sont définis par rapport au repère satellite ou par rapport à un repère secondaire, lui-même défini par rapport au repère satellite. L'alignement entre les différents référentiels est mesuré sur le sol mais peut évoluer pendant le lancement, mais également à cause du changement de gravité et des distorsions thermiques. Un instrument peut d'ailleurs être positionné sur un bras articulé (cela se rencontre surtout sur les sondes planétaires). La connaissance précise de l'attitude nécessite un étalonnage en vol de ces changements d'alignement et distorsions. Les données et les commandes de la charge utile et des capteurs sont paramétrées par rapport aux systèmes de coordonnées locaux.


Représentation d'attitude

Auteur: Gary Quinsac

Introduction

L'orientation d'un satellite dans l'espace correspond à l'orientation du repère fixé sur son corps par rapport à un autre repère, tel que ceux vus précédemment. Ainsi, la détermination d'attitude d'un satellite en particulier requiert des méthodes d'estimation de la matrice orthogonale transformant des vecteurs d'un référentiel de référence fixé dans l'espace à un référentiel fixé par rapport au corps du satellite. De plus, une mission spatiale ne peut être définie par un unique référentiel. En fonction des besoins, de l'échelle à laquelle on se place, il est nécessaire d'utiliser tel ou tel référentiel. Dès lors, le passage d'un référentiel à un autre devient un aspect crucial du SCAO. L'une des plus importantes propriétés des matrices d'attitude est énoncée par le théorème d'Euler.

definitionThéorème d'Euler

L'orientation instantanée d'un objet peut toujours être décrite par une unique rotation autour d'un axe fixe.

On peut parler de pôle eulérien pour nommer le centre de rotation. Il doit son nom au mathématicien et physicien suisse Leonhard Euler. Dès lors qu'un point d'un solide reste fixe lors d'un déplacement, ce déplacement est équivalent à une rotation autour d'un axe passant par le point fixe (pôle eulérien). En algèbre linéaire, ce théorème implique que deux référentiels cartésiens partageant la même origine sont reliés par une rotation autour d'un axe fixe.

Leonhard Euler
images/Leonhar-Euler.jpg
Portrait par Johann Georg Brucker (1756).
Crédit : Domaine public

Les relations permettant de jongler entre les systèmes de coordonnées peuvent être charactérisées de différentes manières, comportant chacune leurs lots d'avantages et inconvénients. Certaines d'entre elles sont présentées dans la partie suivante :

Les démonstrations des principales relations sont proposées en exercices.


Matrice du cosinus directeur

La façon la plus évidente de donner l'orientation d'un référentiel par rapport à un autre est d'exprimer leurs vecteurs de base dans l'autre repère.

Changement de repère en 2D

Une introduction simple à ce changement de repère peut être faite en 2D. Prenons un référentiel R, avec les axes X_R et Y_R, incliné par rapport à un référentiel B, d'axes X_B et Y_B, d'un angle \theta. Le vecteur \bold {OP} peut être exprimé dans ces deux systèmes sous forme matricielle :{\bold {OP}}_R = \binom{x_R}{y_R} et {\bold {OP}}_B = \binom{x_B}{y_B}.

La relation entre les deux systèmes de coordonnées peut être décrite par une matrice de cosinus directeur (MCD), ou matrice de rotation, variant avec \theta. Cette matrice transforme le vecteur \bold{OP} du premier référentiel R vers le second B.

\binom{x_B}{y_B} = \begin{pmatrix} cos \theta & sin \theta \\ 0 & 0 \end{pmatrix} \binom{x_R}{y_R}

Les éléments de la MCD correspondent aux produits scalaires des vecteurs de base. Le produit scalaire entre deux vecteurs unitaires correspond au cosinus de l'angle formé par ces vecteurs.

activiteAppliquette interactive

Une appliquette interactive est disponible ici. Elle revient sur le changement de repère en 2D en permettant de projeter les coordonnées d'un point dans un référentiel en rotation par rapport à un autre.

Généralisation à l'espace à 3 dimensions

En 3 dimensions la MCD est une matrice de passage 3x3. L'expression d'un vecteur \bold v_B dans B à partir de son expression \bold v_R dans R s'écrit :

\bold v_B = [T]_{B|R} \bold v_R avec [T]_{B|R} = \begin{pmatrix} \bold B_x \cdot \bold R_x & \bold B_x \cdot \bold R_y & \bold B_x \cdot \bold R_z \\ \bold B_y \cdot \bold R_x & \bold B_y \cdot \bold R_y & \bold B_y \cdot \bold R_z \\ \bold B_z \cdot \bold R_x & \bold B_z \cdot \bold R_y & \bold B_z \cdot \bold R_z \end{pmatrix}

On dit que la MCD décrit l'orientation de B par rapport à R. On l'appelle également matrice de rotation ou matrice de transformation des coordonnées de R vers B.

Rotations élémentaires

Trois rotations élémentaires de R autour de chacun de ses trois axes se retrouvent décrites par les matrices de rotation suivantes :

[T(\theta_1)]_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{\theta_1} & s_{\theta_1} \\ 0 & -s_{\theta_1} & c_{\theta_1} \end{pmatrix}, [T(\theta_2)]_2 = \begin{pmatrix} c_{\theta_2} & 0 & -s_{\theta_2} \\ 0 & 1 & 0 \\ s_{\theta_2} & 0 & c_{\theta_2} \end{pmatrix} et [T(\theta_3)]_3 = \begin{pmatrix} c_{\theta_3} & s_{\theta_3} & 0 \\ -s_{\theta_3} & c_{\theta_3} & 0 \\ 0 & 0 & 1 \end{pmatrix}

[T(\theta_i)]_i indique une rotation d'angle \theta_i autour du i-ème axe du référentiel fixé sur le corps.

Propriétés de la MCD

La MCD est une matrice orthogonale, ce qui signifie que son inverse est égal à sa transposée :

[T]^{-1} = [T]^T et [T][T]^T = [I] = [T]^T[T]

\bold v_R = [T]_{R|B}^T \bold v_B = \begin{pmatrix} \bold B_x \cdot \bold R_x & \bold B_y \cdot \bold R_x & \bold B_z \cdot \bold R_x \\ \bold B_x \cdot \bold R_y & \bold B_y \cdot \bold R_y & \bold B_z \cdot \bold R_y \\ \bold B_x \cdot \bold R_z & \bold B_y \cdot \bold R_z & \bold B_z \cdot \bold R_z \end{pmatrix}

Les transformations successives entre référentiels peuvent être déterminées par une série de multiplications matricielles. Par exemple, la transformation du référentiel inertiel au référentiel du satellite peut être décomposée de la manière suivante : transformation du référentiel inertiel au référentiel fixé sur la Terre multipliée par la transformation du référentiel fixé sur la Terre au référentiel orbital, le tout multiplié par la transformation du repère orbital au repère du satellite.

[T]_{sat|inertiel} = [T]_{sat|orbite} [T]_{orbite|Terre} [T]_{Terre|inertiel}

Limitations de cette représentation

Malgré certains avantages, la MCD n'est pas toujours la représentation la plus adaptée. Elle utilise 9 paramètres pour décrire une orientation, parmi lesquels seulement 3 sont indépendants.


Angles d'Euler

Présentation des angles d'Euler

Les angles d'Euler sont les angles introduits par Leonhard Euler pour décrire l'orientation d'un solide. Ils peuvent être utilisés pour définir l'orientation d'un référentiel par rapport à un autre. On obtient une rotation en faisant varier l'un des trois angles d'Euler et une séquence de 3 rotations est suffisante pour décrire n'importe quelle transformation. La première rotation est effectuée selon n'importe quel axe, tandis que les deux suivantes ne peuvent jamais être effectuées autour d'un axe utilisé par la rotation précédente. Au total, 12 jeux d'angles d'Euler existent : (1,2,1), (1,2,3), (1,3,1), (1,3,2), (2,1,2), (2,1,3), (2,3,1), (2,3,2), (3,1,2), (3,1,3), (3,2,1), (3,2,3). L'ordre des rotations et la valeur des angles ne sont pas uniques et sont sujets à des singularités mathématiques.

Exemples

activiteAppliquette interactive

Une appliquette interactive est disponible ici. Elle permet de visualiser dans l'espace les séquences d'Euler qui sont introduites dans cette section à titre d'exemple.

Les angles d'Euler décrivent une rotation unique, ce qui est généralement un avantage par rapport à la MCD. Cependant, à une orientation donnée correspondent plusieurs jeux d'angles d'Euler.

De la séquence d'Euler à la MCD

Quelle que soit la séquence d'Euler, la MCD peut facilement être obtenue en multipliant les matrices de rotation élémentaires. Soit la séquence particulière suivante, décrivant l'orientation du référentiel B par rapport au référentiel A :

[T(\theta_1)]_1 \leftarrow [T(\theta_2)]_2 \leftarrow [T(\theta_3)]_3

[T]_{B|A} = [T(\theta_1)]_1 [T(\theta_2)]_2 [T(\theta_3)]_3, donc : [T]_{B|A} = \begin{pmatrix} c_{\theta_2} c_{\theta_3} & c_{\theta_2} s_{\theta_3} & -s_{\theta_2} \\ s_{\theta_1} s_{\theta_2} c_{\theta_3} - c_{\theta_1} s_{\theta_3} & s_{\theta_1} s_{\theta_2} s_{\theta_3} + c_{\theta_1} c_{\theta_3} & s_{\theta_1} c_{\theta_2} \\ c_{\theta_1} s_{\theta_2} c_{\theta_3} +s_{\theta_1} s_{\theta_3} & c_{\theta_1} s_{\theta_2} s_{\theta_3} - s_{\theta_1} c_{\theta_3} & c_{\theta_1} c_{\theta_2} \end{pmatrix}

Nous avons utilisé les notations c_{\theta} = cos \ \theta et s_{\theta} = sin \ \theta.

Limites de cette représentation

D'une manière générale, les angles d'Euler déterminent une orientation unique, ce qui est un avantage sur la MCD. Des singularités apparaissent lorsque le deuxième angle d'Euler aligne les premier et troisième axes de rotation. Dans ce cas, cette description d'attitude à 3 degrés dégénère en une description à seulement 2 degrés de liberté. Cette condition est réalisée lorsque l'angle vaut 90 et 270 degrés pour les 6 rotations où les premier et troisième axes sont différents, et lorsque l'angle vaut 0 et 190 degrés pour les 6 rotations où les premier et troisième axes sont identiques.

Séquence d'Euler pour les paramètre orbitaux
images/euler-313.png
La séquence d'Euler (3-1-3) correspond aux paramètres orbitaux habituellement utilisés pour un satellite en orbite terrestre : le nœud ascendant (\Omega), l'inclinaison (i) et l'anomalie vraie (\nu).
Crédit : Gary Quinsac
Séquence d'Euler pour les roulis, tangage et lacet
images/Satellite-roulis-tangage-lacet.png
La séquence d'Euler (3-1-2) correspond aux angles de roulis, tangage et lacet. Ils sont illustrés avec le satellite d'observation de la Terre SPOT 3.
Crédit : Gary Quinsac

Quaternions

Auteur: Gary Quinsac

Représentation 3D

Afin de s'affranchir du problème de singularité rencontré avec les angles d'Euler, une représentation de l'attitude composée de 4 éléments est introduite sous le nom de quaternion (dont les éléments sont appelés paramètres d'Euler). Cette construction mathématique est présentée plus en détail dans la partie suivante.

Présentation des quaternions

Considérons l'axe fixe de la rotation présentée dans le théorème d'Euler, ou vecteur propre \bold e. C'est un vecteur unité possédant les mêmes composantes dans les référentiels de départ et d'arrivée : \bold e_r = \bold e_b. Ainsi, 4 grandeurs sont requises pour décrire de façon non-ambigüe l'orientation par rapport à un référenciel : les 3 composantes de \bold e et l'angle de la rotation, \theta.

Les quaternions sont une combinaison de ces éléments disposés dans un vecteur de 4 éléments \bold q. Le quaternion contient la même information qu'une MCD à 9 éléments, tout en s'affranchissant des problèmes de singularité rencontrés avec les angles d'Euler. Ils sont à la fois compacts et une représentation efficace de l'orientation pour la détermination d'attitude. Une même rotation est représentée par les quaternions \bold q et - \bold q. On note également que les quatre paramètres d'Euler ne sont pas indépendants, mais contraints par la relation suivante :

\bold q^T \bold q = q_0^2 + q_1^2 + q_2^2 + q_3^2

Pour le vecteur propre \bold e_R = \bold e_B = \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix}, les paramètres d'Euler sont : \bold q = \begin{pmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{pmatrix}, avec q_0 = cos({\theta \over 2}), q_1 = e_1 sin({\theta \over 2}), q_2 = e_2 sin({\theta \over 2}) et q_3 = e_3 sin({\theta \over 2}).

Des quaternions à la MCD

De la même façon que l'on peut exprimer la MCD en fonction des angles d'Euler, elle peut être paramétrée en fonction d'un quaternion de la manière suivante :

[T]_{B|R} = [T(\bold q)] = \begin{pmatrix} 1-2(q_2^2+q_3^2) & 2(q_1q_2+q_3q_0) & 2(q_1 q_3 - q_2 q_0) \\ 2(q_2q_1-q_3q_0) & 1-2(q_1^2+q_3^2) & 2(q_2q_3+q_1q_0) \\ 2(q_3q_1+q_2q_0) & 2(q_3q_2-q_1q_0) & 1-2(q_1^2+q_2^2) \end{pmatrix}

Propriétés des quaternions

Avantage des quaternions

Un avantage inhérent à cette représentation est que les équations de la cinématique deviennent purement algébriques et ne contiennent plus de fonctions trigonométriques.


Présentation mathématique

Les quaternions sont un système de nombres premièrement décrits par William Rowan Hamilton en 1843 appliqué à la mécanique et à l'espace à 3 dimensions.

complementWilliam Rowan Hamilton

Sir William Rowan Hamilton (04/08/1805 - 02/09/1865) est un mathématicien, physicien et astronome irlandais (né et mort à Dublin). Outre sa découverte des quaternions, il contribua également au développement de l'optique, de la dynamique et de l'algèbre. Ses recherches se révélèrent importantes pour le développement de la mécanique quantique.

William Rowan Hamilton
images/Hamilton_painting.jpg
Peinture de Sir William Rowan Hamilton.
Crédit : Domaine public

Définition mathématique

Autre représentation

Une autre façon de présenter un quaternion consiste à dire que q_0 est la partie scalaire de vecteur(q) et q_1 i + q_2 j + q_3 k est la partie vectorielle. Ainsi, la partie scalaire est toujours réelle et la partie vectorielle toujours purement imaginaire. Bien que l'on ait dit qu'un quaternion est un vecteur dans un espace à 4 dimensions, il est courant de définir un vecteur pour la partie imaginaire d'un quaternion : \bold q_{1:3} = q_1 i + q_2 j + q_3 k et \bold q = q_0+\bold q_{1:3}


Equations du mouvement

Auteur: Gary Quinsac

Introduction à la cinématique et la dynamique

Maintenant que nous avons étudié les différentes façons de décrire l'orientation d'un repère à l'instant t, nous pouvons introduire la notion de mouvement. Les équations du mouvement sont un aspect essentiel de la conception et de la réalisation d'un système de contrôle d'attitude car elles régissent la position au cours du temps des objets considérés. Ces équations peuvent être séparées en deux catégories :

Afin de clarifier les choses, prenons une particule ponctuelle de la physique newtonienne. Si \bold{r} représente sa position, \bold v sa vitesse et que les dérivées temporelles sont indiquées par un point, alors l'équation cinématique du mouvement s'écrit \dot{\bold{r}} = \bold{v}. L'équation dynamique du mouvement quant à elle s'écrit dans un repère galiléen m \dot{\bold{v}} = \bold{F} ou \dot{\bold{p}} = \bold F, avec \dot{\bold{p}} = m \dot{\bold{v}} la quantité de mouvement, \bold F la résultante des forces appliquées et m la masse de la particule. Comme vous le verrez par la suite, dès lors que l'on s'intéresse aux mouvement d'attitude (autour du centre d'inertie), les vecteur de position et de vitesse sont respectivement remplacés par la matrice d'attitude et le vecteur de vitesse angulaire \boldsymbol\omega. Les forces et quantités de mouvement sont quant à elles remplacées par le couple \bold C et le moment angulaire \bold H. La cinématique et la dynamique du mouvement rotationnel, ou d'attitude, sont plus compliquées que celles du mouvement de translation. Elles sont détaillées dans la section suivante.

complementAller plus loin


Cinématique du satellite

Auteur: Gary Quinsac

Cinématique du point

La cinématique est l'étude du mouvement en fonction du temps indépendammant des causes produisant ce mouvement. Elle est utilisée pour décrire la trajectoire du centre de masse d'un satellite dans l'espace.

Bases de la cinématique

Des cours sur ce sujet existent un peu partout, nous rappellerons simplement quelques notions de base ici :

Dans le cas d'un mouvement circulaire, chaque point du corps tourne dans un cercle.

Cinématique et changement de référentiels

Dans notre domaine, nous sommes constamment contraints de passer d'un repère à un autre pour décrire la trajectoire d'un objet. En cas de référentiels en rotation, tels qu'un référentiel fixé par rapport à la Terre et un référentiel inertiel, passer de l'un à l'autre nécessite d'introduire des termes supplémentaires. Par exemple, si l'on veut décrire la position, la vitesse et l'accélération d'une particule dans un référentiel inertiel noté I à partir de sa position dans un référentiel terrestre (fixé par rapport à la Terre) noté F, on peut écrire :


Cinématique d'attitude

La simulation et l'estimation d'attitude nécessitent généralement des représentations simples de l'attitude, telles que celles présentées dans le chapitre du même nom. Les équations différentielles de la cinématique peuvent ainsi être obtenues pour ces différentes représentations. Les démonstrations de ces équations sont proposées en exercices.

La cinématique d'attitude relie des vitesses angulaires à des orientations dans l'espace. Si cela peut sembler simple dans le cas d'une rotation autour d'un axe fixe, cela devient beaucoup moins intuitif dans le cas d'un mouvement plus général, où l'axe de rotation varie au cours du temps. Pour un corps en rotation autour d'un axe fixe, l'orientation par rapport à cet axe peut être déterminée en intégrant la vitesse angulaire ω, puisque \omega = \frac{d}{dt}(\theta).

MCD

Dans le cas général, la matrice exprimant le taux de variation de l'attitude est plus complexe. Considérons un référentiel B en rotation par rapport à un référentiel A avec une vitesse angulaire \boldsymbol\omega_{B|A}. Si la matrice d'attitude s'exprime [T]_{B|A}, alors :

\frac{d}{dt} \left( [T]_{B|A} \right) = -[\Omega] \ [T]_{B|A} avec [\Omega] = \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix}

La matrice d'attitude se retrouve multipliée par une matrice anti-symétrique qui est définie à partir du vecteur \boldsymbol\omega_{B|A} représentant la vitesse angulaire du référentiel B par rapport au référentiel A, avec \boldsymbol\omega_{B|A} = \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix}.

Dans ce cas, nous avons utilisé une MCD.

Angles d'Euler

Il est également possible d'exprimer cette équation différentielle en utilisant les angles d'Euler. En reprenant la séquence de rotations [T(\theta_1)]_1 \leftarrow [T(\theta_2)]_2 \leftarrow [T(\theta_3)]_3 conduisant du référentiel A au référentiel B l'équation de la cinématique est réécrite :

\begin{pmatrix} \dot{\theta_1} \\ \dot{\theta_2} \\ \dot{\theta_3} \end{pmatrix} = \frac{1}{\textup{cos}(\theta_2)} \begin{pmatrix} \textup{cos}(\theta_2) & \textup{sin}(\theta_1) \ \textup{sin}(\theta_2) & \textup{cos}(\theta_1) \ \textup{sin}(\theta_2) \\ 0 & \textup{cos}(\theta_1) \ \textup{cos}(\theta_2) & -\textup{sin}(\theta_1) \ \textup{cos}(\theta_2) \\ 0 & \textup{sin}(\theta_1) & \textup{cos}(\theta_1) \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix}

En connaissant la vitesse angulaire d'un référentiel par rapport à l'autre en fonction du temps il est possible de déterminer la position au cours du temps d'un référentiel par rapport à l'autre. Néanmoins, l'intégration nécessite le calcul de fonctions trigonométriques ainsi que des singularités (ici \theta_2 = \pm \frac{\pi}{2}).

Quaternions

Dans le cas des quaternions, l'expression de l'équation de la cinématique se retrouve simplifiée :

\dot{\bold q} = \begin{pmatrix} \dot{q_0} \\ \dot{q_1} \\ \dot{q_2} \\ \dot{q_3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & -\omega_1 & -\omega_2 & -\omega_3 \\ \omega_1 & 0 & \omega_3 & -\omega_2 \\ \omega_2 & -\omega_3 & 0 & \omega_1 \\ \omega_3 & \omega_2 & -\omega_1 & 0 \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{pmatrix}

Une écriture plus compacte est possible :

\begin{cases} \dot{\bold q}_{1:3} = \frac{1}{2} \left(q_0 \ \boldsymbol\omega - \boldsymbol\omega \wedge \bold q_{1:3} \right) \\ \dot{q}_0 = -\frac{1}{2} \ \boldsymbol\omega^T \bold{q}_{1:3} \end{cases}

Contrairement aux angles d'Euler, les quaternions ne présentent pas de singularité géométrique. L'équation cinématique exprimée avec les quaternions ne possède pas de fonctions trigonométriques, ce qui rend les quaternions parfaitement adaptés aux calculs à bord réalisés en temps réel. Ainsi, les algorithmes de détermination d'attitude modernes sont généralement décrits en termes de quaternions.


Dynamique du satellite

Auteur: Gary Quinsac

Bases de la dynamique

Maintenant que nous nous tournons vers la dynamique d'attitude, il est important de bien différencier le mouvement de rotation d'un système du mouvement de son centre d'inertie. Nous allons nous concentrer sur le cas d'un corps rigide.

Force / Moment / Couple

Une force représente l'action d'un corps sur un autre. En revanche le moment d'une force par rapport à un point décrit l'aptitude de cette force à faire tourner un système autour de ce point. Le moment \bold \Gamma_O de la force \bold F par rapport à au point O est défini par :

\bold \Gamma_O = \bold{OM} \wedge \bold F

On parle de couple lorsqu'un ensemble de forces a une résultante nulle sur un système (leur somme vaut 0) alors que le moment résultant par rapport à un point O est non nul. Dans ce cas, il est possible de montrer que le moment global d'un tel couple par rapport à n'importe quel point est égal au produit vectoriel caractéristique du couple :

\bold C= \bold{r} \wedge \bold F

\bold r est le vecteur allant du centre de gravité du système au point d'application de la force \bold F. Si, pour un corps solide sans contraine, une force va accélérer son centre de masse, un couple aura lui pour effet d'induire un mouvement de rotation autour du centre de masse.

remarqueRemarque

On parle de couple pur lorsqu'une paire de forces d'intensité égale mais de directions opposées agissent à distance.

Propriétés d'inertie

Lorsque l'on parle du mouvement d'un solide autour de son centre d'inertie, il nous faut définir le tenseur d'inertie. Il s'exprime ainsi :

[I] = \begin{pmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{xy} & I_{yy} & -I_{yz} \\ -I_{xz} & -I_{yz} & I_{zz} \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^{n}{m_i \left(y_i^2+z_i^2 \right)} & -\sum_{i=1}^{n}{m_i \ x_i \ y_i} & -\sum_{i=1}^{n}{m_i \ x_i \ z_i} \\ -\sum_{i=1}^{n}{m_i \ x_i \ y_i} & \sum_{i=1}^{n}{m_i \left(x_i^2+z_i^2 \right)} & -\sum_{i=1}^{n}{m_i \ y_i \ z_i} \\ -\sum_{i=1}^{n}{m_i \ x_i \ z_i} & -\sum_{i=1}^{n}{m_i \ y_i \ z_i} & \sum_{i=1}^{n}{m_i \left(x_i^2+y_i^2 \right)} \end{pmatrix},

Les éléments diagonaux de ces expressions sont les moments d'inertie du solide par rapport aux divers axes, et les autres éléments sont les produits d'inertie. Les propriétés inertielles d'un solide sont donc totalement décrites par sa masse, la localisation de son centre d'inertie (ou centre de masse), et par les moments et produits d'inertie définis par rapport à des axes de références en un point particulier. Tous les solides ont un jeu d'axes principaux d'inertie dont l'origine se trouvent en son centre de masse et qui annule les produits d'inertie, rendant diagonale la matrice d'inertie.

activiteAppliquette interactive

Une appliquette interactive est disponible ici. Elle illustre l'importance du choix des axes d'inertie dans le calcul de la matrice d'inertie.

Moment cinétique

L'analogie avec l'étude du centre de masse est une nouvelle fois possible. Le moment linéaire d'un corps solide, produit de la masse de ce corps par la vitesse de son centre de masse, est appelé quantité de mouvement, m \ \bold v. Considérons un système matériel qui est la somme de n masses ponctuelles. Le moment angulaire, ou moment cinétique, par rapport à un point O est le moment de la quantité de mouvement \bold p par rapport à ce point O :

\bold L_O = \sum_{i=1}^{n}{\bold r_i \wedge \left( m_i \ \bold v_i \right)} = \sum_{i=1}^{n}{\bold r_i \wedge \bold p_i}

On a également pour habitude d'exprimer le moment angulaire à partir de la matrice de moment d'inertie [I] et de la vitesse angulaire \boldsymbol\omega :

\bold L = [I] \ \boldsymbol\omega

Le passage de l'une à l'autre des expressions se fait en considérant que :

rappelRappel


Dynamique du solide

Considérons un satellite solide avec un référentiel fixé sur son corps B dont l'origine se trouve au centre de masse du satellite. Notons \boldsymbol\omega_{B|I} le vecteur vitesse angulaire du référentiel B par rapport au référentiel inertiel I.

Equation d'Euler

D'après la 2ème loi de Newton, dans un référentiel galiléen, la dérivée de la quantité de mouvement est égale à la somme des forces extérieures qui s'exercent sur le solide. Dans le cas du moment angulaire, son principe de conservation stipule que sa dérivée est égale à la somme des couples extérieurs qui s'exercent sur le corps :

\dot{\bold L} = \sum_{i=1}^{n}{\bold r_i \wedge \bold F_i^{ext}} = \sum_{i=1}^{n}{\bold C_i^{ext}}

\bold L est le moment angulaire du corps solide par rapport à son centre de masse et \bold C_i^{ext} sont les couples extérieurs agissant sur ce corps. On appelle parfois cette équation l'équation d'Euler. Elle montre que seuls les couples extérieurs peuvent modifier le moment cinétique dans un système.

Facteurs impactant l'attitude d'un satellite

Il est maintenant possible de réécrire cette équation en reprenant l'expression du moment cinétique présentée précédemment complétée par le moment angulaire stocké par n'importe quel objet en rotation dans le satellite \bold L = [I] \boldsymbol\omega+ \bold h :

[I] \dot{\boldsymbol\omega} = \sum_{i=1}^{n}{\bold C_i^{ext} - \dot{\bold h} - \dot{[I]} \boldsymbol\omega}

Cette dernière équation permet de comprendre comment l'attitude d'un satellite peut être modifiée. En prenant les termes de cette équation de la gauche vers la droite, on retrouve d'abord les couples extérieurs, les objets embarqués en rotation (tels que les roues à inertie) et les modifications des moments d'inertie du satellite (qui peuvent notamment être dues à la perte de carburant au cours d'une mission).

En conclusion, les couples peuvent perturber l'attitude d'un satellite mais peuvent également être utilisés pour la contrôler. Les actionneurs doivent donc avoir une capacité suffisante pour contrer les couples perturbateurs tout au long de la mission si l'on veut un contrôle permanent de l'attitude du satellite.


Perturbations

Auteur: Gary Quinsac

Perturbations : introduction

Les faibles forces agissant sur un satellite sont connues pour dégrader la précision de pointage et engendrer des déformations mécaniques.

Des perturbations de différentes origines...

On peut distinguer les perturbations externes des perturbations internes au satellite. Dans la première catégorie on retrouve la pression de radiation solaire, la trainée atmosphérique ou pression dynamique, le couple magnétique dû au dipôle résiduel et le gradient de gravité. Les perturbations internes sont liées aux équipements présents dans le satellite. Si certains sont utilisés pour contrôler le satellite, comme les roues à inertie, la plupart sont à l'origine de couples perturbateurs. Parmi ces phénomènes, on retrouve les mécanismes tels que ceux utilisés pour les panneaux solaires ou les instruments mobiles, le désalignement et la quantification des actionneurs, le déplacement du carburant, l'incertitude sur le positionnement du centre de gravité, le frottement des roues à inertie ou encore le dégazage des polymères.

Les forces extérieures sont les plus importantes pour la majorité des CubeSats car ceux-ci sont généralement dépourvus de mécanismes ou de parties mobiles. On dénombre 4 sources environmentales de couples perturbateurs dont l'intensité varie grandement en fonction de la position du satellite dans l'espace :

Ayant différents effets

On remarque que les perturbations citées précédemment peuvent avoir deux types d'effets : séculaire ou cyclique. Les perturbations ayant un effet cyclique sont en moyenne nulles sur une orbite circulaire. Les perturbations séculaires s'accumulent durant une orbite et sont analogues à une force non-conservative. Or, on se souvient que les couples extérieurs sont proportionnels à la variation du moment cinétique du satellite. La gestion du moment cinétique va donc dépendre du type de perturbation auquel le satellite aura affaire. Suivant le pointage, certaines perturbations extérieures peuvent être cycliques ou séculaires. Dans le cas d'un pointage inertiel, on parle d'effets cycliques pour la traînée atmosphérique, le gradient de gravité et les couples magnétiques, alors qu'on parle d'effets séculaires pour les couples de pression de radiation solaire. Dans le cas d'un autre pointage classique, le pointage nadir, les couples magnétiques et de pression solaire ont des effets cycliques, à l'inverse de la trainée atmosphérique. Pour ce qui est des gradients de gravité, ils peuvent avoir les deux types d'effets.

Perturbations environmentales
images/perturbations-environmentales-fr1.png
Couples perturbateurs dus à l'environement du satellite.
Crédit : Gary Quinsac
Couples subis par un CubeSat de 3U
images/couples-perturbateurs.png
Les couples maximums subis par un CubeSat de 3U autour de la Terre et Mars sont représentés (respectivement en traits pleins et pointillés). Mars n'ayant pas ou peu de champ magnétique et une atmosphère très ténue, les couples associés ne sont pas représentés car trop faibles.
Crédit : Gary Quinsac
Couple cyclique ou séculaire : fonction du pointage
images/couples-seculaires-et-cycliques.png
Le couple de pression de radiation solaire est plus ou moins constant dans le cas d'un pointage inertiel, à l'origine d'une accumulation du moment cinétique : c'est un couple séculaire. Au contraire, ce couple est moyennement nul sur une orbite pour un satellite effectuant un pointage nadir : on dit alors que le couple est cyclique.
Crédit : Gary Quinsac
Gestion du moment cinétique
images/gestion-moment-cinetique.png
On peut voir l'accumulation du moment cinétique au cours d'une orbite dans le cas d'un couple séculaire, nécessitant de décharger celui-ci avec des actionneurs appropriés. En revanche le couple cyclique peut être stocké par un actionneur qui va se contenter de fournir un couple en opposition de phase tout au long de l'orbite.
Crédit : Gary Quinsac

Perturbations externes

Auteur: Gary Quinsac

Champ magnétique

Certains corps célestes, dont la Terre, ont des champs magnétiques assez puissants pour induire d'importants effets dans l'espace environnant. Ce champ interagit avec tout autre champ magnétique qu'il rencontre. En général, les satellites ont eux-mêmes un certain niveau de moment magnétique résiduel qui se traduit par un champ magnétique propre relativement faible. Ils se comportent comme des dipôles magnétiques car ils sont parcourus par des boucles de courant. Ainsi, un courant de I ampères circulant dans une boucle plane d'aire A produit le moment dipolaire (en A.m) :

\bold D = I \ A \ \bold n_A

Des méthodes de compensation sont généralement mises en œuvre à bord. Si le moment magnétique résiduel d'un satellite n'est pas aligné avec le champ magnétique local un couple magnétique apparaît et modifie l'attitude du satellite. Le couple magnétique \bold C_m est donné par :

\bold C_m = \bold D \wedge \bold B

\bold B (en T) représente le champ magnétique.

remarqueChamp magnétique terrestre

Bien que le champ magnétique de la Terre soit complexe, il est souvent suffisant de le modéliser tel un dipôle (30% d'erreur sont souvent considérés) et de déterminer la valeur maximum possible. Le couple maximum peut donc être estimé à partir du champ magnétique B = \frac{M}{r^3} \ \lambda, où M (en T.m3) est le moment magnétique terrestre multiplié par la constante magnétique, r la distance entre le satellite et le centre du corps , et enfin \lambda une fonction sans unité de la latitude magnétique qui prend des valeurs allant de 1 au niveau de l'équateur magnétique à 2 aux pôles magnétiques. Des modèles utilisant des harmoniques sphériques existent, à la manière du champ gravitationnel terrestre, mais la précision qu'ils permettent d'atteindre n'est pas nécessaire lors des premières phases de développement du projet spatial. L'un de ces modèles, le "12th generation of the International Geomagnetic Reference Field (IGRF)", est utilisé pour calculer le champ magnétique obtenu sur une trajectoire circulaire de 500 km d'altitude inclinée de 50°. Celui-ci est représenté par rapport au plan local tangent ou repère NED ("North East Down"). On remarque qu'il varie grandement au cours de l'orbite.

Dipôle magnétique terrestre
images/champ-magnetique.png
La Terre peut être assimilée à un dipôle magnétique dont l'axe est incliné d'à peu près 11° par rapport à l'axe nord-sud géographique. Attention, le pôle sud magnétique se trouve du coté du pôle nord géographique.
Crédit : Gary Quinsac
Champ magnétique terrestre sur une orbite
images/champ-magnetique-ned.png
Champ magnétique sur une orbite terrestre circulaire de 500 km d'altitude et 50° d'inclinaison dans le référentiel NED.
Crédit : Gary Quinsac

En dehors de quelques corps du système solaire, tels que la Terre et Jupiter, la plupart des régions de l'espace ne possèdent pas un champ magnétique suffisamment puissant et bien connu pour qu'un contrôle d'attitude magnétique puisse être utilisé par un satellite s'y trouvant.

complementAller plus loin


Gradient de gravité

Le gradient de gravité résulte de l'interaction du champ gravitationnel, lui-même proportionnel à l'inverse du carré de la distance, avec un satellite de masse non ponctuelle. L'accélération gravitationnelle est la plus forte sur la partie du satellite la plus proche du corps attracteur. Le gradient est à l'origine d'un couple qui peut être utilisé pour contrôler passivement l'attitude du satellite. Les couples de gradient de gravité apparaissent lorsque le centre de gravité d'un satellite en orbite n'est pas aligné avec le centre de masse par rapport à la verticale locale.

remarqueCentres de masse et de gravité

Le centre de masse, également appelé centre d'inertie, est le barycentre des masses d'un objet. Le centre de gravité, quant à lui, est le point d'application de la résultante des forces de gravité. Si ceux-ci sont souvent confondus, ce n'est plus le cas lorsque le champ de gravitation n'est plus uniforme dans le corps en question.

On exprime le gradient de gravité \bold C_{GG} de la manière suivante :

\bold C_{GG} = \int_{b}{\bold r_b \wedge d \bold F_{GG}}

\bold r_b est le vecteur position allant du centre de gravité du satellite à l'élément de masse et d \bold F_{GG} est la force de gravité s'appliquant sur ce même élément de masse :

d \bold F_{GG} = \frac{-G \ M}{|{\bold r_i}^3|} \ \bold r_i \ dm

G est la constante gravitationnelle, elle vaut 6,67259 \times 10^{-11} \ \textup{m}^{3}.\textup{kg}^{-1}.\textup{s}^{-2}, M est la masse du corps attracteur et \bold r_i est le vecteur position de l'élément de masse dm dans le référentiel inertiel (\bold r_i = \bold r_{CG} + \bold r_b). On peut finalement réécrire l'équation donnant le couple de gradient de gravité de la manière suivante :

\bold C_{GG} = \frac{3 \ G \ M}{|\bold r_{CG}|^5} \ \bold r_{CG} \wedge \left([I] \ \bold r_{CG} \right)

Ce couple dépend de la matrice d'inertie [I] du satellite. Différentes propriétés sont visibles dans cette équation : la magnitude est inversement proportionnelle au cube de la distance au centre du corps attracteur, sa direction est perpendiculaire au rayon vecteur et il disparaît lorsque l'un des axes principaux du satellite est aligné avec ce rayon vecteur.

complementStabilisation par gradient de gravité

Cette technique de contrôle d'attitude passive est assez utilisée pour des satellites en orbite terrestre devant pointer au nadir. Elle consiste à faire intéragir un satellite de forme particulière avec le champ gravitationnel afin de contraindre son orientation. Une masse peut être montée au bout d'un mât perpandiculaire à l'orbite afin de créer un moment d'inertie minimum selon cet axe. Cette masse étant plus proche, elle est plus attirée. Le satellite aura alors tendance à aligner cet axe d'inertie vers la verticale à l'orbite (qui est la direction d'attraction gravitationnelle).

complementAller plus loin

Gradient de gravité
images/gradient-gravite.png
Géométrie du couple de gradient de gravité.
Crédit : Gary Quinsac
Satellite stabilisé par gradient de gravité
images/stabilisation-gradient-gravite.png
Crédit : National Air and Space Museum, Smithsonian Institution.

Pression de radiation solaire

La pression de radiation solaire est la source dominante de couples perturbateurs dans l'espace interplanétaire (absence de traînée atmosphérique, faibles champs de gravité et magnétique). Même en orbite basse, on a pour habitude de considérer qu'il est dominant à des altitudes supérieures à 800 km. Il est important de noter que si le Soleil n'est pas l'unique source de radiation (il y a notamment l'albédo de la Terre et de la Lune, les rayons cosmiques...), il est de loin la plus importante. Le Soleil émet des photons, mais également des protons et des électrons (vent solaire). L'interaction entre la lumière du Soleil et la surface du satellite est habituellement modélisée comme une force de pression exercée sur un objet.

On modélise la surface du satellite comme une collection de N surfaces d'aire S_i, dont la normale orientée vers l'extérieur est notée \bold n_B^i dans le référentiel du satellite et de coefficient de réflexion C_R^i (on lui attribue généralement une valeur de 0,6 pour un petit satellite).

Le vecteur allant du satellite au Soleil dans le référentiel du satellite s'écrit vecteur(s). L'angle entre ce vecteur et et la normale à la ième surface s'écrit alors :

\textup{cos} \left(\theta_{PRS}^i \right) =  \bold n_B^i \cdot \bold s

La force de pression de radiation solaire exercée sur une surface peut alors s'exprimer de la manière suivante :

\bold F_{PRS}^i = - \bold P_S \ S_i \ C_R \ \textup{max} \left( \textup{cos} \left( \theta_{PRS}^i \right) \ ; \ 0 \right) avec P_S = \frac{\phi_S}{c}

\phi_S (en W.m) est l'irradiance solaire moyenne (fonction de la distance au Soleil) et c (en m/s) est la vitesse de la lumière.

La différence entre les positions des centres de pression solaire et de masse aboutit à un couple de radiation solaire. Une telle différence dépend des surfaces éclairées, de l'incidence des rayons lumineux et de la répartition de la masse à l'intérieur du satellite. On note \bold r_i le vecteur allant du centre de masse du satellite au centre de pression de radiation solaire de la ième surface. Le couple de radiation solaire s'écrit alors :

\bold C_{PRS} = \sum_{i=1}^{N}{\bold r_i \wedge \bold F_{PRS}^i}

complementComplément : coefficients de réflexion

Afin de gagner en précision, il est possible de détailler le coefficient de réflexion en une somme de trois coefficients dont le résultat vaut 1 :

La force de pression de radiation sur la ième surface s'exprime alors :

\bold F_{PRS}^i = -P_S \ S_i \left[ 2 \left( \frac{R_{diff}^i}{3} + R_{spec}^i \ \textup{cos} \left(\theta_{PRS}^i \right) \right) \bold n_B^i + \left( 1-R_{spec}^i \right) \bold s \right] \textup{max} \left( \textup{cos} \left( \theta_{PRS}^i \right) \ ; \ 0 \right)

complementComplément : irradiance solaire

L'irradiance solaire représente la quantité d'énergie solaire reçue par une surface de 1 m2 située à une certaine distance r du Soleil et exposée perpendiculairement. Afin de la calculer, il faut considérer la conservation de l'énergie rayonnée dans l'espace et écrire :

\phi_s = \phi_{\odot} \ \left( \frac{R_{\odot}}{r} \right)^2

avec \phi_{\odot} le flux émis à la surface du Soleil et R_{\odot} le rayon du Soleil. \phi_{\odot} est estimé en appliquant la loi de Stefan-Boltzmann au Soleil considéré comme un corps noir :

\phi_{\odot} = \sigma \ {T_{\odot}}^4

avec \sigma la constante de Stefan-Boltzmann et T_{\odot} la température thermodynamique du corps noir. À la distance moyenne Terre-Soleil (1 UA) l'irradiance solaire (ou constante solaire) vaut 1362 W.m-2.

remarqueZone d'ombre

Afin de simuler la pression de radiation solaire, il ne faut pas oublier les zones d'ombres dans lesquelles le satellite peut se retrouver. Par exemple, en orbite basse autour de la Terre, un satellite peut passer une partie importante de son orbite caché des rayons du Soleil. L'approche la plus simple est de considérer que l'ombre de la Terre est une projection cylindrique du diamètre de la Terre le long de l'axe Soleil-Terre. Sur cette figure on remarque qu'en faisant le produit scalaire de vecteur unitaire \bold e_{\odot \oplus} (Terre-Soleil) on obtient l'inégalité suivante lorsque le satellite se trouve dans la zone d'ombre :

\bold r \cdot \bold e_{\odot \oplus} < - \sqrt{r^2 - R_{\oplus}^2}

Géométrie du couple de pression de radiation solaire
images/geometrie-pression-radiation-solaire.png
Géométrie du couple de pression de radiation solaire. Chaque face du satellite exposée au Soleil subit une force qui, si elle est désaxée par rapport au centre de masse, engendre un couple.
Crédit : Gary Quinsac
Zones d'ombre
images/pression-radiation-solaire-zone-ombre.png
Géométrie simplifiée du problème de zone d'ombre en orbite terrestre.
Crédit : Gary Quinsac

Traînée atmosphérique

L'atmosphère ténue des corps célestes peut exercer une force de pression sur un satellite. Cela inclut toutes les interactions avec des particules non-chargées, comme les queues de comète, les poussières ou les éjectas. Dans le cas de la Terre, à quelques centaines de kilomètres d'altitude, ce couple peut être le plus important. De la même manière qu'avec le couple dû à la pression de radiation solaire, on calcule la force exercée par la traînée atmosphérique en considérant que le satellite est une collection de N surfaces d'aire Si. On définit de nouveau la normale orientée vers l'extérieur, notée \bold n_B^i, pour chacune des surfaces. La force s'exerçant sur chaque surface dépend de la vitesse relative du satellite par rapport à l'atmosphère. En première approximation, on considère que cette vitesse relative est égale à celle du satellite, mais en réalité ce n'est pas immédiatement la vitesse du satellite dans le référentiel inertiel, car l'atmosphère n'est pas stationnaire dans celui-ci. L'inclinaison de la ième surface par rapport à la vitesse relative du satellite s'exprime :

\textup{cos} \left( \theta_{aero}^i \right) = \frac{\bold n_B^i \cdot \bold v_{rel}}{||\bold v_{rel}||}

La force aérodynamique s'exerçant sur la ième surface est :

\bold F_{aero}^i = -\frac{1}{2} \ \rho \ C_x \ S_i \ ||\bold V_{rel}|| \ \bold V_{rel} \ \textup{max} \left( \textup{cos} \left( \theta_{aero}^i \right) ; 0 \right)

Dans cette équation, ρ est la densité atmosphérique et C_x est le coefficient de trainée. Ce coefficient est déterminé de manière empirique et se situe généralement entre 1.5 et 2.5. Un couple apparaît lorsque la force agissant sur le centre de la pression atmosphérique ne passe pas par le centre de masse. Une estimation de ce couple est donnée par l'équation suivante :

\bold C_{aero} = \sum_{i=1}^{N}{\bold r_i \wedge \bold F_{aero}^i}

\bold r_i est le vecteur allant du centre de masse du satellite au centre de pression de la ième surface.

En principe, les couples aérodynamiques peuvent être utilisés pour effectuer un contrôle passif de l'attitude, comme les plumes d'une flèche, et même pour un contrôle actif avec des surfaces amovibles.


Perturbations internes

Bien que les CubeSats puissent généralement être modélisés comme un simple corps solide, de nombreuses raisons peuvent rendre la situation beaucoup plus complexe :

On qualifie ces couples internes de couples d'échange de moment cinétique car ils correspondent à un échange de moment cinétique entre des composants d'un satellite complexe sans que le moment cinétique du satellite dans son ensemble ne soit modifié.


Matériel

Auteur: Gary Quinsac

Introduction aux capteurs et actionneurs

Capteurs

Les capteurs se trouvent en amont de la chaîne du SCAO. Historiquement, les progrès réalisés se sont concentrés sur leur résolution et leur précision, leur masse, leur taille et leur puissance. À partir d'une référence, un capteur déduit son orientation dans l'espace ou sa vitesse de rotation. Le choix d'un capteur dépend de nombreux paramètres techniques, parmi lesquels :

Les capteurs se basent sur différents types de mesures permettant ainsi de les classer :

Actionneurs

Les actionneurs sont des dispositifs conçus pour engendrer des forces ou couples capables de produire des mouvements du satellite. Les solutions existantes sont relativement variées et les principales peuvent être classées de la manière suivante :

Les actionneurs peuvent également être séparés en deux catégories. Ceux qui ne servent qu'au contrôle d'attitude, et ceux qui peuvent réaliser à la fois du contrôle d'attitude et du contrôle d'orbite.


Capteurs

Auteur: Gary Quinsac

Capteurs optiques

Les capteurs optiques fournissent l'orientation dans l'espace du repère du capteur, lui-même lié au repère du satellite, par rapport à des directions de références extérieures, telles que les étoiles, le Soleil et la Terre.

Capteurs stellaires

Un viseur d'étoiles ou capteur d'étoiles est un instrument optique qui repère les coordonnées d'une ou plusieurs étoiles et les compare ensuite aux éphémérides des étoiles enregistrées dans une bibliothèque inclue dans l'instrument. C'est l'instrument optique le plus précis (entre 1 et 10 secondes d'angle pour les plus performants). Il se compose d'un baffle afin d'éviter l'illumination par des éléments parasites tels que le Soleil, d'une partie optique chargée de collecter et focaliser la lumière sur un détecteur (CCD ou APS), d'une électronique de traitement du signal et d'un refroidisseur pour le détecteur. La matrice du détecteur est constituée de pixels qui permettent d'obtenir une image numérisée du champ de vue de l'instrument, chaque pixel étant repéré par ses coordonnées dans le repère lié au viseur stellaire. On détermine finalement la position d'une étoile en calculant le barycentre de l'énergie collectée sur les pixels éclairés. Les viseurs d'étoiles sont utilisés lorsqu'une connaissance fine de l'attitude est nécessaire. Ils ont besoin que la vitesse de rotation du véhicule soit contrôlée en amont afin de ne pas dépasser la vitesse de décrochage, vitesse au dessus de laquelle la lumière d'une étoile se trouve projetée sur de trop nombreux pixels durant la pose et ne permet plus la mesure.

Un capteur d'étoiles possède deux modes d'opération : le mode d'acquisition et le mode de suivi. Dans le premier, la position et la magnitude des objets brillants éclairant la matrice du détecteur sont comparées au catalogue d'étoiles afin de déterminer de façon grossière l'attitude du satellite sans information préalable. Une fois cette estimation de l'attitude intiale effectuée, le second mode permet le suivi sur la matrice des positions des étoiles identifiées. En sortie, un tel capteur est capable de fournir un quaternion d'attitude du repère capteur par rapport à un repère inertiel, tel que le repère J2000, et dans certains cas la vitesse de rotation du satellite.

Viseur d'étoile
images/capteur-stellaire.jpg
Viseur d'étoiles ASTROP APS développé par l'agence spatiale nationale allemande DLT et la compagnie Jena-Optronik en Allemagne. Il est équipé d'une technologie de protection de radiation permettant de longues missions.
Crédit : ESA, Jena-Optronik

Capteurs solaires

Les capteurs solaires permettent de déduire l'attitude du satellite de la mesure de l'angle d'incidence des rayons solaires sur le capteur. Ils sont classés en deux catégories : les capteurs analogiques et les capteurs digitaux. Dans les grosses missions satellitaires, ils permettent respectivement d'obtenir une précision de 1° à 0,1° et inférieure à 0,05°.

Capteur solaire digital
images/capteur-solaire-digital.jpg
Capteur solaire analogique pyramidal développé par NTO pour la plateforme de satellites de télécommunication Spacebus-4000. Il fournit la position du Soleil selon 2 axes avec une précision meilleure que 0,1°.
Crédit : ESA, NTO

Capteurs terrestres

Les capteurs terrestres sont utilisés pour déterminer l'orientation du satellite par rapport à la Terre. Plus précisément, c'est l'horizon de la Terre qui est utilisé, car la Terre elle-même peut couvrir jusqu'à 40% de l'espace environnant pour un satellite en orbite passe. Néanmoins, il est difficile de détecter précisément la limite de l'horizon à cause de l'atmosphère terrestre (jusqu'à 70 km), de la décroissance graduelle de l'énergie réémise par la Terre, des variations entre les régions illuminées ou à l'ombre, et enfin de la limite de précision des capteurs. Le principe de détection adopté est donc basé sur une variation thermique de l'élément sensible dans la bande spectrale infra-rouge où la Terre est vue comme un disque uniforme : la bande d'absorption du CO2 entre 14 et 16 μm. Ainsi, l'énergie émise par la Terre est plus homogène et l'horizon, précisément délimité, est visible de jour comme de nuit.

Ces capteurs peuvent être de deux types : les capteurs statiques, qui pointent dans une direction fixe, et les capteurs à balayage. Ils sont principalement utilisés sur des satellites en orbite basse et les satellites de télécommunication en orbite GEO ou MEO. Ils ont jusqu'à présent été assez peu utilisés sur CubeSats.


Capteurs magnétiques

Magnétomètres

Les magnétomètres convertissent un champ magnétique ambiant en tension électrique. Ils sont principalement constitués de bobines conductrices qui génèrent un courant ou une variation de courant lorsqu'elles sont placées dans un champ magnétique. Ils ne possèdent pas de partie mobile, n'ont pas besoin d'un champ de vue dégagé, consomment peu et sont faiblement encombrants. Ils peuvent néanmoins être contaminés par le champ magnétique local créé par des matériaux ferromagnétiques ou des boucles de courant dans les panneaux solaires. Ainsi, il faut compenser ces champs locaux s'ils sont connus, ou s'en affranchir en se plaçant à bonne distance (au bout d'un mât par exemple) dans le cas contraire. La technologie la plus utilisée, "flux gate", délivre directement la projection du champ magnétique selon l'axe de la bobine, contrairement aux magnétomètres à induction qui fournissent la dérivée temporelle de la projection du champ magnétique. Ces capteurs étant monoaxiaux, on associe généralement trois magnétomètres orientés orthogonalement afin de mesurer le vecteur champ magnétique instantané.

Les magnétomètres sont limités à des environnements possédant un champ magnétique suffisamment fort, et donc à l'orbite terrestre basse du fait de la décroissance en 1/r^3 de son champ magnétique (r étant l'altitude du satellite). On les utilise de différentes manières, l'une d'entre elles étant de calculer le champ magnétique instantané afin de mieux calibrer les couples à générer par les magnétocoupleurs. Ils servent surtout à restituer l'attitude du satellite avec une précision de quelques degrés du fait des erreurs de modélisation du champ magnétique, des erreurs d'orbitographie et de celles propres au capteur. Dans ce cas, seule la connaissance de deux axes est disponible, l'orientation autour du champ magnétique n'étant pas observable. Enfin, on peut utiliser la dérivée du champ magnétique afin d'obtenir une mesure sur 2 axes de la vitesse angulaire du satellite.

Magnétomètre monoaxial "fluxgate"
images/magnetometre-fluxgate.jpg
Un magnétomètre "fluxgate" génère son propre champ magnétique. En inversant régulièrement la direction du courant, on inverse le champ magnétique, ce qui permet d'obtenir un champ magnétique moyen nul. Dans le cas où la magnétomètre se trouve dans un champ magnétique ambiant, la moyenne n'est plus nulle et il est alors possible de connaître ce champ extérieur.
Crédit : Wikipedia

Capteurs inertiels

Les capteurs inertiels fournissent au satellite une mesure par rapport à une référence fixe dans l'espace. Les gyromètres délivrent l'attitude (vitesse angulaire) et les accéléromètres la position par rapport à cette référence. Pour les premiers, il y a détection du mouvement de rotation absolue, tandis que pour le second c'est le mouvement de translation accéléré qui est détecté. Nous ne nous intéresserons pas ici aux accéléromètres qui ne sont pas utiles à la détermination d'attitude.

Gyromètres

Les gyromètres mesurent donc les vitesses angulaires du satellite. On peut en déduire l'attitude de celui-ci en intégrant les vitesses calculées sur un temps donné. Ils sont très intéressants car ils permettent de fournir en permanence les mesures de vitesse de rotation sans se soucier du champ de vue et avec une très bonne précision à court terme. Ils fournissent également des informations à plus haute fréquence que les autres capteurs, ce qui est nécessaire pour certaines boucles de contrôle comme pour le contrôle du vecteur de poussée lors de phases de propulsion. On distingue plusieurs types de gyromètres : les gyromètres mécaniques, les gyromètres optiques et les gyromètres vibrants.

Gyromètres mécaniques

Les gyromètres mécaniques utilisent une toupie gyroscopique. Celle-ci possède une raideur gyroscopique du fait d'une vitesse de rotation élevée permettant de la maintenir selon une direction fixe. Tout couple s'exerçant celui-ci provoque l'écartement de cet axe par rapport à la direction initiale avec une vitesse faible du fait de la rigidité gyroscopique. Le principe consiste à estimer les mouvements du véhicule par rapport à la direction de référence que matérialise l'axe de rotation de la toupie.

Gyroscope
images/Gyroscope.png
Exemple de gyroscope. Tant que le rotor (plateau central) sera en rotation, il gardera son axe de rotation fixe quelles que soient les orientations des cercles extérieurs.
Crédit : Gary Quinsac

Gyromètres optiques

Les gyromètres optiques peuvent être des gyromètres laser ou à fibre optique. Dans les deux cas, ils présentent l'avantage de se dispenser de pièce mécanique en mouvement (pas d'usure), d'avoir de plus grande dynamique de mesure et bande passante, une insensibilité à l'accélération et moins de contraintes concernant la stabilité en température. Les gyromètres laser fonctionnent suivant le principe du laser à cavité résonnante. Les gyromètres à fibre optique reprennent l'effet Sagnac. Deux ondes parcourant un chemin fermé en rotation (par rapport à un référentiel inertiel) subissent un décalage temporel lorsqu'elles ont été émises et reçues par un émetteur/récepteur fixe par rapport au chemin optique. Le décalage temporel entre les deux rayons lumineux est ainsi proportionnel à la vitesse de rotation du système.

Gyromètre optique
images/Gyrometre-optique.png
La lumière émise par la source se propage dans la bobine de fibre optique dans deux directions opposées suite à une première traversée de la lame séparatrice (un quart de l'énergie émise initialement arrivera sur le détecteur selon chacune des directions de parcours). Du fait de la rotation de la plateforme, les signaux lumineux parcourant la bobine de fibre dans des directions opposées arriveront au récepteur dans des temps différents. C'est l'effet Sagnac.
Crédit : Gary Quinsac

Gyromètres vibrants

Les gyromètres vibrants quant à eux sont assez proches des gyromètres mécaniques, à la différence près qu'aucune pièce n'est ici en mouvement. Ils détectent le déplacement d'une onde vibratoire dans une structure, dû à la force de Coriolis.

Accéléromètres

Les accéléromètres sont principalement utilisés pour la navigation et le guidage des véhicules de rentrée atmosphérique ou dans l'identification de microvibrations. Une modification de leur tension de sortie est traduite en accélération. Le principe de base consiste à disposer d'une masse dans un boîtier fixée par des ressorts. Lorsque le boîtier est accéléré, la masse a tendance à rester fixe par inertie : elle est donc en mouvement par rapport au boîtier. Les ressorts ont alors pour effet de contrer le déplacement de la masse par rapport au boîtier, et ce déplacement devient alors proportionnel à l'accélération de ce dernier. Les accéléromètres sont capables de mesurer la résultante des forces de surface mais pas les accélérations d'origine gravitationnelle puisque la masse et son boîtier sont soumis au même champ gravitationnel.

Accéléromètre
images/accelerometre.png
Le déplacement de la masse par rapport à la boîte dans lequelle elle se trouve dépend de l'accélération de la boîte. \bold F= m \ \bold a = k \ \bold x, avec \bold a l'accélération, m la masse, k la constante de raideur du ressort et \bold x le déplacement du ressort.
Crédit : Gary Quinsac

Actionneurs

Auteur: Gary Quinsac

Actionneurs inertiels

Parmi les actionneurs inertiels, on distingue les roues d'inertie et les actionneurs gyroscopiques.

Roues à inertie

Les roues à inertie sont les actionneurs les plus utilisés pour le contrôle d'attitude des satellites. Elles permettent le stockage et la restitution du moment cinétique. Elles sont composées d'une masse en rotation autour d'un axe fixe ou volant d'inertie. Le couple créé par une roue à inertie est égal au changement du moment cinétique durant un temps donné (voir la page sur la dynamique d'attitude). Un couple est ainsi créé lorsque le moment cinétique de la roue à inertie est modifié, c'est-à-dire que sa vitesse de rotation change. Cette accélération ou décélération angulaire permet d'emmagasiner ou de libérer du moment cinétique. Ce type d'actionneur peut saturer, c'est-à-dire atteindre une limite supérieure ou inférieure en vitesse angulaire. Dans ce cas il lui devient impossible de fournir un couple selon cet axe (toute évolution possible est une décélération de la roue entraînant un couple dans le sens contraire à celui souhaité). Il faut alors utiliser un autre actionneur à bord pour ramener la vitesse dans une plage admissible tant pour le fonctionnement propre de la roue que pour les performances du contrôle d'attitude. Ces actions de réduction de la vitesse absolue du volant d'inertie, appelées "désaturation", se font lors de l'application d'un couple antagoniste, généralement à l'aide de magnéto-coupleurs ou de propulseurs.

Roues à inertie
images/roue-a-inertie-Kepler.jpg
Deux des quatre roues à inertie du télescope Kepler durant l'assemblage. Elles sont inclinées différemment afin de permettre un contrôle de l'attitude selon plusieurs axes. L'une de ces roues a été victime d'un problème que l'on rencontre parfois avec ce type d'actuateurs, c'est à dire une friction trop importante. Pour parer à la perte d'une roue à inertie, on se permet généralement des configurations redondantes sur les gros satellites.
Crédit : Ball Aerospace photo

Actionneurs gyroscopiques

Les roues à inertie sont limitées en termes de capacité de couple. C'est la raison pour laquelle les satellites nécessitant de rapides manœuvres ou possédant des fortes inerties (comme les stations orbitales) utilisent plutôt des actionneurs gyroscopiques, ou gyrocoupleurs. Contrairement aux roues à inertie, le principe n'est plus de produire un couple en faisant varier la vitesse de rotation de la roue, mais en modifiant l'axe de rotation d'une roue tournant à une vitesse constante. Une variation du moment cinétique est ainsi créée, se traduisant par un couple perpendiculaire au moment cinétique de la roue et au vecteur vitesse de rotation qui lui est appliqué (suivant le principe du couple gyroscopique). Les actionneurs gyroscopiques consomment moins d'énergie et possèdent une plus grande capacité de couple pour des masses et des tailles comparables. Néanmoins, leur utilisation est limitée par l'importance des couples appliqués aux articulations (risques de panne mécanique) et aux précisions requises dans les mesures de position et de vitesse angulaire.

Actionneur gyroscopique
images/actionneur-gyroscopique.png
Fonctionnement d'un actionneur gyroscopique.
Crédit : Gary Quinsac

Actionneurs magnétiques

Magnéto-coupleurs

Un magnéto-coupleur est une bobine qui, parcourue par un courant, génère un moment dipolaire \bold M (en A.m2). En présence d'un champ magnétique tel que le champ magnétique terrestre \bold B, le magnéto-coupleur fournit alors un couple \bold C_{MC} = \bold M \wedge \bold B. On distingue trois types de magnéto-coupleurs :

La principale limitation de cet actionneur est que le couple généré est toujours orthogonal au champ magnétique, limitant à seulement deux angles d'attitude le contrôle du satellite en un point donné de son orbite. À l'instar des magnétomètres, leur utilisation est limitée aux orbites terrestres basses. Ils peuvent être utilisés soit pour effectuer du contrôle d'attitude soit pour "désaturer" des actionneurs inertiels. La plupart des applications des magnéto-coupleurs utilisent trois appareils produisant des couples sur trois axes orthogonaux. Il n'est pas toujours nécessaire d'employer plus de magnéto-coupleurs pour la redondance puisqu'ils ont habituellement un "double enroulement" fournissant une redondance interne.

Magnéto-coupleurs
magneto-coupleur-cubesat.png
"SatBus MTQ" est un système composé de trois magnéto-coupleurs orthogonaux respectant le standard CubeSat. Les bobines 1 et 2 bénéficient d'un barreau ferromagnétique, contrairement à la bobine 3.
Crédit : Nano Avionics

Propulsion

Auteur: Gary Quinsac

Introduction à la propulsion

Spécificités de la propulsion

Parmi les fonctions couvertes par le SCAO il y a la réalisation des manœuvres de modification de la vitesse ainsi que le contrôle d'attitude associé (assurer le pointage des propulseurs lors de la poussée). Le ΔV nécessaire au contrôle d'orbite ne peut être fourni que par des propulseurs, néanmoins ceux-ci peuvent également être utilisés pour générer des couples. Contrairement aux magnéto-coupleurs, ce sont des actionneurs utilisables sur n'importe quelle orbite car ils n'ont pas besoin d'un environnement particulier pour fonctionner. Leur principal inconvénient est une durée de vie limitée inhérente à l'utilisation d'un carburant, lui-même en quantité finie.

Fonctions de la propulsion satellitaire

Il faut différencier la propulsion des lanceurs de celle des satellites. La première doit permettre des incréments de vitesse de l'ordre de 7 à 100 km/s et de très importants niveaux de poussée. Elle se caractérise par une faible capacité d'emport et se présente sous la forme de puissants propulseurs chimiques. La seconde, qui nous intéresse ici, sert à effectuer des transferts orbitaux et des voyages interplanétaires, du contrôle d'orbite et du contrôle d'attitude. Le sous-système propulsif d'un satellite remplit ainsi certaines fonctions :

Orientation du vecteur de poussée

Pour cela, il doit délivrer des forces et des couples. Les forces, ou poussées, sont obtenues par l'éjection de matière à grande vitesse et varient entre quelques μnewtons et quelques centaines de newtons. Suivant les axes de poussée, deux cas de figure sont possibles :

Moteur principal de la navette américaine
images/moteur-principal-navette.jpg
Test d'allumage du moteur principal de la navette spatiale.
Crédit : NASA
Système de propulsion de BepiColombo
images/BepiColombo_propulsion.jpg
Vue d'artiste du système de propulsion ionique qui sera utilisé pour la mission BepiColombo. Cette mission d'exploration de la planète Mercure doit être lancée en octobre 2018 et est développée conjointement par l'ESA et la JAXA.
Crédit : ESA

Fondamentaux de la propulsion

Conversion d'énergie

Tous les types de systèmes de propulsion sont basés sur un processus de conversion d'énergie. Du carburant est libéré à grande vitesse (vitesse d'expulsion notée v_e qui représente la vitesse relative entre le satellite et le carburant expulsé) avec une quantité de mouvement associée m \ \bold v_e, ce qui, par conservation de la quantité de mouvement, résulte en une quantité de mouvement opposée pour le véhicule. En partant de la troisième loi de Newton et en considérant que la vitesse d'expulsion est constante, on obtient : \bold F = \dot m \bold v_e \ \textup{[N]} .

Incrément de vitesse

Ecrivons que la variation de la quantité de mouvement du satellite est opposée à la variation de la quantité de mouvement du carburant expulsé : \Delta V \ m = -\Delta m \ v_e

On peut directement en déduire la capacité d'incrément de vitesse total (\Delta V) du satellite : \int_{0}^{v=\Delta V}{dv} = -v_e \ \int_{m_i}^{m_f}{\frac{1}{m} \ dm}

On en déduit l'équation de Tsiolkovski : \Delta V = -v_e \ \textup{ln} \left( \frac{m_f}{m_i} \right)

complementManœuvres orbitales

Voici quelques exemples d'incréments de vitesse associés à des lancements et à des manœuvres orbitales issus de "Spacecraft propulsion - A brief introduction" par Peter Erichsen :

Incréments de vitesses associés à des manœuvres spatiales et de décollage
ManœuvreΔV typique [m/s]
Kourou LEO (équatorial)9300
Kourou GTO 11443
Cap Canaveral LEO (équatorial)9500
Cap Canaveral GEO13600
LEO GEO (changement d'inclinaison de 28°)4260
GTO GEO (changement d'inclinaison de 9°)1500
GTO GEO (changement d'inclinaison de 28°)1800
Maintien à poste Nord/Sud50 / an
Maintien à poste Est/Ouest5 / an
LEO Orbite de libération terrestre3200
LEO Orbite lunaire3900
LEO Orbite martienne5700

Quantité de carburant

Si l'on veut déterminer la quantité de carburant nécessaire à la réalisation d'un manœuvre spatiale m_p = m_i - m_f, il ne reste plus qu'à déplacer les termes de l'équation précédente afin d'obtenir : m_p = m_i \left( 1 - exp \left( -\frac{\Delta V}{v_e} \right) \right)

Impulsions

Action-réaction
images/action-reaction.png
Illustration du principe d'action-réaction. Le carburant éjecté propulse le véhicule dans la direction opposée.

Systèmes de propulsion

Auteur: Gary Quinsac

Systèmes de propulsion

Le sous-système de propulsion est en interaction proche avec les sous-systèmes mécanique et thermique, notamment pour l'implantation des réservoirs et le contrôle thermique de la propulsion. Il doit également respecter les exigences du contrôle d'attitude et d'orbite (SCAO). Si son principe de fonctionnement est basique (une énergie emmagasinée est libérée afin de transmettre une énergie cinétique à un véhicule) il existe différents types de propulsion, eux-mêmes divisés en sous-groupes :

Dans le but de répondre aux exigences du SCAO, les systèmes de propulsion sont en particulier caractérisés par :

Certains de ces critères sont repris dans le tableau suivant pour les différents types de propulsion introduits dans ce cours.

Comparaison des différents types de propulsion
Type de propulsionFiabilitéCoûtIspPousséePuissance électrique
Gaz froidsGazTrès bonneTrès basTrès basseFaibleTrès faible
LiquideBonneTrès basTrès basseFaibleTrès faible
Gaz chaudsSolideBonneBasMoyenneTrès forteTrès faible
Mono-carburantBonneBasBasseFaibleTrès faible
Bi-carburantMoyenneHauteMoyenneTrès faible
ÉlectriqueÉlectrothermiqueMoyenneHauteTrès faibleForte
ÉlectromagnétiqueFaibleTrès hauteExtrêmement faibleForte
ÉlectrostatiqueFaibleExtrêmement hauteTrès faibleTrès forte

Une comparaison de la force de poussée et de l'impulsion spécifique de systèmes de propulsion adaptés aux nano.micro-satellites est proposée dans cette figure.

Classification des sous-systèmes de propulsion
images/classement-propulsion.png
Les principaux systèmes de propulsion sont ici classés par catégorie. Les couleurs indiquées sur cette figure correspondent au couleurs présentes dans la figure suivante.
Crédit : Gary Quinsac
Performances de systèmes de propulsion pour CubeSat
images/isp_thrust.png
Impulsion spécifique et force de poussée de systèmes de propulsion pour CubeSat (en développement pour la plupart en 2018). Des couleurs permettent de différencier les différents types de propulsion.
Crédit : Gary Quinsac

Propulsion chimique

La propulsion chimique utilise des gaz à haute température et/ou pression, accélérés à travers une tuyère. Les systèmes de propulsion chimique sont généralement associés à des impulsions spécifiques plus faibles que les propulsions électriques, mais de plus grandes poussées. On peut les diviser en deux catégories : les systèmes à gaz froid et à gaz chaud.

Systèmes de propulsion à gaz froid

Ces systèmes utilisent des gaz stockés sous haute pression ou sous forme liquide. Les gaz sont détendus dans une tuyère convergente-divergente pour obtenir la force de poussée. Ce sont les systèmes les plus simples à mettre en œuvre, mais cela s'accompagne d'une faible force de poussée et d'un faible rendement (impulsion spécifique). Ils présentent une bonne aptitude au fonctionnement en mode pulsé, du fait du faible temps de réponse, les rendant attrayant pour assurer le contrôle d'attitude. Ils ont également l'avantage de limiter les contaminations de l'environnement, ce qui est intéressant notamment pour les optiques des missions scientifiques.

La simplicité de ces systèmes les rend intéressants pour les CubeSats. Néanmoins, du fait de la nécessité de pressuriser le carburant, ils ne respectent pas le cahier des charges décrit par le CDS ("CubeSat Design Specification").

Systèmes de propulsion à gaz chauds

Pour les missions requérant des niveaux de poussée et d'impulsion supérieurs, les gaz froids ne sont plus adaptés et il est nécessaire d'utiliser des carburants plus énergétiques générant des gaz chauds. Les systèmes à gaz chaud sont le type le plus commun de propulsion spatiale. Les ergols des systèmes à gaz chaud sont stockés à l'état liquide ou solide. Une réaction de combustion exothermique de l'ergol est nécessaire pour obtenir des produits à haute température qui sont ensuite expulsés dans la tuyère. Ils nécessitent donc généralement une étape de plus que les gaz froids. On les classe en deux catégories en fonction de leur ergol :

Mono-ergols

Le mono-ergol le plus utilisé est l'hydrazine. Il se décompose dans le propulseur par catalyse. Les gaz chauds résultant sont explulsés par la tuyère. Il présente l'avantage d'être fiable tout en conservant de bonnes performances, mais sa haute toxicité a poussé les chercheurs à s'orienter vers des aternatives appelée "mono-ergols verts". Ces ergols sont des sels dérivés de l'acide nitrique, tels que le dinitramide d'amonium.

Bi-liquides

Dans les systèmes à bi-liquides, deux ergols, un comburant et un carburant, produisent une force de poussée par combustion. Ils sont introduits séparément dans la chambre de combustion où ils s'inflamment spontanément par contact et génèrent des gaz chauds, une nouvelle fois détendus dans la tuyère. Ces systèmes sont plus complexes et plus chers que les systèmes présentés précédemment, mais ils sont également plus efficaces (meilleure Isp) et plus puissants (meilleure poussée).

Schéma des systèmes de propulsion chimiques
images/schema-propulsion-chimique.png
Crédit : Gary Quinsac

Propulsion électrique

La propulsion électrique contourne la limitation fondamentale de la propulsion chimique, c'est-à-dire que l'énergie du carburant expulsé ne dépend que de son énergie chimique et du débit. Une énergie électrique ou électromagnétique est utilisée afin d'éjecter de la matière à des vitesses beaucoup plus élevées. En d'autres termes, on utilise la puissance électrique issue du sous-système électrique (panneaux solaires, batteries...) pour accélérer le carburant et produire une force de poussée. Ces vitesses d'éjection plus importantes se traduisent immédiatement par une plus grande efficacité (moins de carburant est nécessaire pour obtenir un même incrément de vitesse). Néanmoins, les forces de poussée produites sont nettement plus faibles que dans le cas de la propulsion chimique. Par conséquent, la propulsion électrique est préférée lorsque le ΔV à réaliser est important ou lorsque il est nécessaire des manœuvres avec des poussées très faibles (contrôle d'attitude très précis, etc.).

La propulsion électrique offre une grande gamme de performances en fonction du type de sous-système utilisé. On les classe ainsi en trois catégories : les systèmes électrothermaux, électromagnétiques et électrostatiques.

Systèmes de propulsion électrothermaux

Historiquement, ces systèmes sont une amélioration par rapport aux systèmes de propulsion chimiques. Le gaz est chauffé en passant le long d'une surface chauffée électriquement ou à travers un arc électrique afin de lui conférer plus d'énergie. Le gaz ainsi chauffé bénéficie d'une détente plus efficace.

Systèmes de propulsion électromagnétiques

La propulsion électromagnétique utilise la conversion d'un gaz en plasma. Le plasma est constitué d'électrons (de charge électrique négative), d'ions (pour la plupart de charge électrique positive) et d'atomes ou molécules neutres (non chargés électriquement). Les ions positifs résultants sont alors accélérés à de très grandes vitesses par l'énergie électrique grâce à la force de Laplace \bold j \wedge \bold B, où \bold j et \bold B sont respectivement le flux de courant ionique dans le plasma et le champ magnétique. Il en résulte une force de poussée sur le satellite dans la direction opposée.

Contrairement aux systèmes électrostatiques qui vont être présentés par la suite, les systèmes électromagnétiques expulsent un plasma globalement neutre, ce qui est intéressant pour éviter de charger électriquement le reste du satellite. Cette famille de propulseurs contient notamment les PPT (Pulsed Plasma Thrusters), les VAT (Vacuum Arc Thrusters) ou encore les MPDT (Magneto Plasma Dynamic Thrusters).

Systèmes de propulsion électrostatiques

À la manière de l'accélération électromagnétique, l'énergie électrique est dans un premier temps utilisée pour transformer le fluide propulsif en plasma. La différence se situe au niveau de l'accélération des ions qui n'est plus obtenue par les forces de Laplace mais par l'application d'un champ électrostatique \bold E créant une force de Coulomb (\bold F = q \ \bold E). Les systèmes de propulsion électrostatiques nécessitent généralement l'installation d'un neutraliseur (cathode) qui fournit des électrons au faisceau d'ions, afin de conserver la neutralité électrique du jet.

Parmi les propulseurs électrostatiques, on peut citer les propulseurs ioniques, les propulseurs à effet Hall et propulseurs FEEP (Field Emission Electric Propulsion).

Schéma des systèmes de propulsion électriques
images/schema-propulsion-electrique.png
Crédit : Gary Quinsac

Filtrage et lois de commande

Auteur: Gary Quinsac

Introduction

Le filtrage et les lois de commande sont présentés car ce spaont des aspects essentiels d'un SCAO. Néanmoins, ce cours a simplement pour ambition de vous en faire une brève introduction.

En mathématiques et en ingénierie, la théorie du contrôle a comme objet l’étude du comportement de systèmes dynamiques. En électronique et traitement du signal, un filtre est originellement un circuit qui rejette une partie indésirable d'un signal. On appelle également filtre un outil logiciel dont le but est la séparation des fréquences contenues dans un signal numérisé.


Estimation d'attitude

Auteur: Gary Quinsac

Principe

L'estimation d'attitude consiste à estimer l'état actuel de l'orientation d'un satellite à partir d'un jeu d'observations et de références obtenues à partir de modèles. Ces observations ont été préalablement effectuées par des capteurs fixés sur le satellite. L'objectif est ici de trouver la meilleure estimation de l'état réel du système sous forme de matrice de changement de repère ou de quaternion d'attitude. La résolution exacte du problème n'est généralement pas possible car les observations sont entachées d'erreurs (erreurs de mesure, d'orientation du capteur, de modélisation...). De plus, on dispose souvent d'une surabondance d'information puisque plusieurs capteurs fournissent des informations par rapport à des références différentes (Soleil, champ magnétique, étoile...). On cherche alors à exploiter de manière optimale ces sources d'information en leur associant des modèles d'erreur.

Les problèmes de détermination d'attitude font intervenir des observations (orientation d'objets) pris à certaines dates. La détermination d'attitude statique représente le cas le plus simple, dans lequel on considère que toutes les mesures sont effectuées au même instant. Au contraire, lorsque le temps est introduit, on parle de détermination d'attitude récursive.

La qualité de la connaissance d'attitude dépend des limitations des capteurs, de la quantification des données, du temps d'échantillonnage et du traitement numérique. La détermination d'attitude embarquée est limitée par les capacités de filtrage de l'ordinateur de bord. Il arrive que pour obtenir une meilleure connaissance de l'attitude a posteriori les données des capteurs soient transmises au segment sol où elles sont post-traitées puis exploitables (par le segment sol ou le satellite).

Boucle SCA
images/boucle-SCA.png
Boucle de contrôle d'attitude.
Crédit : Gary Quinsac

Cas statique

Le cas particulier de l'estimation d'attitude à partir de mesures simultanées de directions non parallèles est ici introduit. À chaque observation sont associés deux vecteurs. Le premier est un vecteur unitaire {\bold b}_i définissant la direction mesurée (observée) de la source (la Terre, le Soleil, une étoile, le champ magnétique terrestre...), exprimée dans le repère lié au satellite. Le second est un vecteur unitaire {\bold r}_i qui définit la direction de référence de la source, exprimée dans le repère origine (généralement inertiel). L'estimation d'attitude consiste ici à déterminer la matrice de transformation orthogonale \bold C satisfaisant pour chaque observation i :

{\bold b}_i = \bold C \ {\bold r}_i

Méthode TRIAD

La méthode TRIAD se base sur l'observation de deux directions non-parallèles. Il s'agit de déterminer la MCD \bold C permettant de transformer les vecteurs de référence {\bold r}_1 et {\bold r}_2 en vecteurs d'observation {\bold b}_1 et {\bold b}_2. Puisque l'on cherche à obtenir l'attitude suivant 3 axes, il nous faut créer deux bases orthonormées (y1, y2, y3) et (x1, x2, x3), respectivement associées aux vecteurs d'oservation et de référence. Il ne reste plus qu'à déduire la matrice de transformation orthogonale (ou MCD) \bold C(3,3) satisfaisant :

\bold y_i = [C] \ \bold x_i , \begin{cases} \bold x_1 = \bold r_1 \\ \bold x_2 = \frac{\bold r_1 \wedge \bold r_2}{|\bold r_1 \wedge \bold r_2|} \\ \bold x_3 = \bold x_1 \wedge \bold x_2 \end{cases} , \begin{cases} \bold y_1 = \bold b_1 \\ \bold y_2 = \frac{\bold b_a1\wedge \bold b_2}{\bold b_1 \wedge \bold b_2} \\ \bold y_3 = \bold y_1 \wedge \bold y_2 \end{cases}

Cette méthode présente l'avantage d'être extrêmement simple, d'où son utilisation dans de nombreuses missions passées. De nos jours, cette méthode n'est plus considérée comme suffisamment précise. En effet, les mesures d'observation sont entachées d'erreur, ce qui empêche d'obtenir le même résultat suivant le vecteur d'observation choisi au départ. C'est pour cette raison que l'on choisit généralement l'observation la plus précise. Des techniques de calcul de la covarience de l'erreur de l'estimation ont été développées pour parer à ces inconvénients.

Méthode QUEST

Un critère quadratique peut être utilisé pour déterminer la matrice d'attitude. Cela revient à chercher la matrice orthogonale vecteur(C) minimisant la fonction de moindres carrés :

L = \frac{1}{2} \ \sum_{i=1}^{n}{a_i \left| \bold b_i - [C] \bold r_i \right|^2}

La minimisation de ce critère n'a rien d'évident et de nombreuses méthodes ont été proposées. Il s'agit d'identifier les 9 paramètres de la MCD respectant les différentes contraintes énoncées précédemment (moindres carrés et règles de la MCD). L'algorithme QUEST (QUaternion ESTimation) offre une alternative intéressante. La forme quadratique est alors utilisée à la place de la MCD, permettant de réduire le nombre de paramètres. Nous ne rentrerons pas dans le détail de cette méthode dans le cadre de ce cours.


Cas général

Dans le cas général où nous ne disposons pas de plusieurs mesures de directions non parallèles effectuées au même instant, le problème d'estimation devient dépendant du temps. Bien que des méthodes récursives basées sur l'algorithme QUEST aient été développées et utilisées, le filtrage de Kalman est le moyen le plus utilisé pour estimer l'attitude d'un satellite en présence de bruits de mesure.

Filtre de Kalman

Le filtre de Kalman a été développé en 1960 comme une nouvelle approche pour le filtrage linéaire et les problèmes de prédiction. Il permet de maintenir une estimation de l'état d'un système dynamique en dehors des périodes d'observation, à partir d'un modèle de son erreur. Puisqu'il s'agit d'un filtre récursif, la quantité d'informations à traiter reste limitée, ce qui en fait un filtre très apprécié à bord des satellites. On a pour habitude de distinguer deux phases dans ce type de filtres, la prédiction et la mise à jour :

exempleFiltre de Kalman discret

C'est la version la plus simple du filtre de Kalman, seules l'estimation de l'état précédent et les mesures actuelles sont nécessaires.

Processus à estimer

Ici, le processus stochastique à estimer est gouverné par une équation différentielle linéaire :

\bold x_k = [A]_k \ \bold x_{k-1} + [B]_k \ \bold u_{k-1} + \bold w_{k-1}

La mesure devant permettre l'estimation s'écrit :

\bold z_k = [H]_k \ \bold x_k + \bold v_k

\bold w_k et \bold v_k représentent respectivement les bruits de processus et de mesure. On les suppose indépendants, blancs et de distribution de probabilité normale. [A] est la matrice qui relie l'état précédent k-1 à l'état actuel k, [B] est la matrice qui relie l'entrée de commande \bold u à l'état \bold x. [H] est la matrice reliant l'état \bold x à sa mesure \bold z.

Phase de prédiction

Durant la phase de prédiction, l'état et l'estimation de la covariance sont projetés dans le temps de l'état k-1 à l'état k :

  • \hat{\bold x}_{k|k-1} = [A]_k \ \hat{\bold x}_{k-1|k-1} + [B]_k \ \bold u_{k-1}
  • [P]_{k|k-1} = [A]_k \ [P]_{k-1|k-1} \ {[A]_k}^T + [Q]_k

[Q] est la matrice de covariance du bruit de processus \bold w, [P]_{k|k-1} est la matrice d'estimation a priori de la covariance de l'erreur.

Phase de mise à jour

Trois étapes se succèdent dans la phase de mise à jour. Il faut d'abord calculer le gain de Kalman [K], puis générer une estimation de l'état a posteriori en incorporant la mesure. Enfin, on obtient la matrice de covariance de l'erreur d'estimation a posteriori [P]_{k|k}.

  • [K]_k = [P]_{k|k-1} {[H]_k}^T \ {[S]_k}^{-1}
  • \hat{\bold x}_{k|k} = \hat{\bold x}_{k|k-1} + [K]_k \ \bold y_k
  • [P]_k = \left( [I] - [K]_k \ [H]_k \right) [P]_{k|k-1}

[I] est la matrice identité. Deux équations supplémentaires permettent d'obtenir l'innovation, ou résiduel, \bold y_k, et la covariance de l'innovation [S]_k :

  • \bold y_k = \bold z_k - [H]_k \ \hat{\bold x}_{k|k-1}
  • [S]_k = [H]_k \ [P]_{k|k-1} \ {[H]_k}^T + [R]_k

À chaque étape le processus est répété afin d'obtenir de nouvelles estimations a posteriori à partir des estimations a priori. En pratique, la matrice de covariance [R] du bruit de mesure est déterminée avant d'utiliser le filtre et peut être mise à jour par la suite. Il est plus compliqué de déterminer la matrice de covariance du bruit de processus [Q] car nous ne pouvons généralement pas directement observer le processus à estimer. Afin d'améliorer les performances du filtre, il est habituel de régler ces deux paramètres.

La plupart des systèmes physiques, et notamment ceux étudiés, sont non linéaires. Le filtre de Kalman classique n'est donc optimal que sur une faible portion des phénomènes pris en compte. Dans le cas de systèmes non-linéaires, nous utilisons donc un filtre de Kalman étendu, ou "Extended Kalman Filter".


Lois de contrôle

Auteur: Gary Quinsac

Introduction à la théorie du contrôle

La théorie du contrôle s'intéresse au comportement de systèmes dynamiques en fonction de leurs paramètres. Elle peut être vue comme une stratégie permettant de sélectionner la bonne entrée d'un système pour que le sortie soit celle désirée. Cela fait partie du domaine de l'automatique.

Boucles ouvertes et fermées

Un système de contrôle est un mécanisme altérant l'état futur d'un système. En l'absence de retour d'information concernant la sortie du système, on se trouve dans le cas d'une boucle ouverte. Prenons l'exemple d'un lave-vaisselle. Celui-ci est programmé pour tourner un certain temps, à une certaine température et avec une certaine quantité d'eau. Ces paramètres ne dépendent pas de l'état de la vaisselle qu'il contient.

Une boucle de rétroaction peut être ajoutée afin de modifier intelligemment la durée du cycle. On obtient alors ce que l'on appelle une boucle fermée, puisqu'une information sur l'état de sortie de notre système, obtenue à l'aide de capteurs, va être comparée à un signal de référence afin de nourir un contrôleur qui a la charge de choisir la bonne entrée. On peut ici parler d'asservissement.

Les boucles de contrôle d'attitude ont pour but d'assurer un contrôle stable de l'orientation du satellite, en prenant en compte les contraintes opérationnelles (temps de réponse aux commandes par exemple) et les perturbations externes et internes. On met en place un asservissement dans le but d'atteindre une valeur de consigne et de la maintenir. Pour ce faire, l'asservissement, ou correcteur, mesure en permanence l'écart entre la valeur réelle de la grandeur à asservir et la valeur de consigne. Il en déduit la commande appropriée que les actionneurs devront ensuite appliquer afin de réduire cet écart.

Systèmes linéaires

Un système linéaire est un objet qui peut être décrit par des équations linéaires. De tels systèmes sont essentiels car nous pouvons les résoudre. Pourtant, presque aucun système réel n'est un système linéaire. L'objectif est donc de simplifier l'objet étudié (actionneur, capteur, système dynamique...) afin de pouvoir l'approximer par un système linéaire. On parle alors de son domaine linéarité.

La réponse d'un système linéaire peut être obtenue en sommant ses réponses impulsionnelles. Cette sommation dans le domaine temporel est appelée convolution. Soit un signal d'entrée u(t) et une réponse impulsionnelle g(t), la sortie y(t) s'exprime :

y(t) = u(t) \ast g(t) = \int_0^t{u(\tau) \ g(t- \tau) \ d \tau}

Fonction de transfert

Afin de simplifier cette opération, on introduit la fonction de transfert. Une fonction de transfert est la transformée de Laplace de la réponse impulsionnelle d'un système linéaire lorsque ses conditions initiales (ou aux limites) sont nulles. Elle permet de transformer le produit de convolution en simple produit :

Y(p) = U(p) \cdot G(p)

definitionTransformée de Laplace

Soit f(t) une fonction du temps. Sa transformée de Laplace unilatérale F(p) est définie par L \left( f(t) \right) = F(p) = \int_{0}^{\infty}{f(t) \ exp(-p \ t) \ dt}p est la variable complexe.

Transformées de Laplace usuelles
f(t)F(p)
\delta (t) (Dirac)1
t\frac{1}{p^2}
x(t)X(p)
\dot x(t)p \cdot X(p) - X(0)
\ddot x(t)p^2 \cdot X(p) - p \cdot X(p) - \dot X(0)

Soit l'équation a x^n D \left( \frac{d}{dt} y \right) = N \left( \frac{d}{dt} u \right)u et y sont respectivement l'entrée et la sortie et D et N sont des polynômes à coefficients réels en (d/dt). Si l'on considère que les conditions initiales sont nulles, on peut réécrire l'équation différentielle précédente pour obtenir la fonction de transfert H :

D(p) \ Y(p) = N(p) \ U(p) \ \leftrightarrow \  \frac{Y(p)}{U(p)} = \frac{N(p)}{D(p)} = H(p)

Les pôles d'une fonction de transfert sont les valeurs pour lesquelles le dénominateur D, aussi appelé équation caractéristique, s'annule. Attention, tout ceci est vrai à condition que la fonction de transfert soit sous forme irréductible. Pour que le système soit stable, il faut que tous les pôles soient strictement à l'intérieur du cercle unité (\|p|<1).

Représentation de la boucle de contrôle d'attitude

On représente la boucle du SCA comme un contrôle en boucle fermée, avec le terme de rétroaction. On note R(p) le signal de référence, Y(p) le signal de sortie, D(p) la perturbation, U(p) le signal de contrôle, Gc(p) le contrôleur, E(p) l'erreur, Gp(p) le matériel à contrôler et C(p) la dynamique des capteurs. Si l'on considère que les perturbations sont nulles, la fonction de transfert s'écrit :

\frac{Y(p)}{R(p)} = \frac{G_c(p) \ G_p(p)}{1+G_c(p) \ G_p(p) \ C(p)}

Le dénominateur de cette équation est un polynome dont les racines déterminent le type de réponse. Le contrôleur peut être utilisé pour stabiliser le système ou lui donner des caractéristiques particulières.

Boucle ouverte ou fermée
images/boucles-ouverte-fermee.png
Dans la boucle ouverte, la durée du cycle de lavage ne dépend pas de la propreté de la vaisselle qu'il contient. Afin d'adapter cette durée à l'état des assiettes et verres, il faut qu'un capteur de propreté fournisse une information à comparer à la propretée désirée et qu'un contrôleur en déduise une nouvelle durée. C'est ce que l'on appelle une boucle fermée.
Crédit : Gary Quinsac
Fonction de transfert
images/fonction-transfert.png
Crédit : Gary Quinsac
Diagramme en bloc de la boucle de contrôle
images/boucle-SCA-fonction-transfert.png
Chaque élément de la boucle de contrôle d'attitude est représenté par sa fonction de transfert.
Crédit : "Fundamentals of Spacecraft Attitude Determination and Control", F. Landis Markley et John L. Crassidis.

Contrôleur

Le contrôleur a pour objectif de convertir l'erreur, c'est-à-dire l'écart entre la mesure de la sortie de la boucle et le signal de référence, en un signal de contrôle qui va finir par ramener l'erreur à 0.

Les performances du contrôleur et a fortiori de l'asservissement sont décrites par plusieurs paramètres :

L'asservissement doit ainsi assurer un compromis entre performance et stabilité. La performance est proportionnelle à la valeur du gain du correcteur, mais à partir d'une certaine valeur celui-ci a tendance à déstabiliser le système.

Contrôleur PID

Le contrôleur "Proportionnel-Intégral-Dérivé" est la logique de contrôle la plus utilisée pour les régulateurs avec boucle de rétroaction. Ce contrôleur agit de trois manières :

La fonction de transfert d'un régulateur PID s'exprime :

C(p) = K_p + \frac{1}{K_i} \ \frac{1}{p} +K_d \ p

Considérons un système de contrôle d'attitude mono-axe simple. L'équation d'Euler s'exprime :

[I] \ \ddot \theta (t) = u(t) + w(t)

[I] est la matrice d'inertie, \theta est l'angle, u est le couple de contrôle et w est le couple perturbateur extérieur.

Contrôleur PD

Un simple contrôle proportionnel ne pourrait pas atteindre une réponse asymptotiquement stable, nous introduisons donc un régulateur PD (proportionnel-dérivé) :

u(t) = -K_p \ \theta(t) - K_d \ \dot \theta (t)

K_p et K_d sont des gains qu'il faut déterminer. Le système en boucle fermée et son équation caractéristique s'écrivent alors :

[I] \ \ddot \theta (t) + [K_d] \ \dot \theta (t) + [K_p] \ \theta(t) = w(t) \ \leftrightarrow \ I \ p^2 + [K_d] \ p + [K_p] = 0

Dans le but d'identifier les valeurs des deux gains, nous introduisons \omega_n et \zeta, respectivement la fréquence propre (fréquence de la réponse sinusoïdale du système non amorti) et le facteur d'amortissement. L'équation caractéristique est réécrite en introduisant ces deux nouvelles grandeurs :

p^2 + 2 \ \zeta \ \omega_n \ p + {\omega_n}^2 = 0

Les gains du contrôleur s'expriment alors : [K_p] = [I] \ {\omega_n}^2 et [K_d] = 2 \ [I] \ \zeta \ \omega_n. On choisit généralement le facteur d'amortissement de tel sorte que 0,5 \leq \zeta \leq 0,707. Il est important de noter que l'information sur la dérivée provient de gyroscopes ou de différences finies de l'attitude.

Contrôleur PID

Pour une perturbation constante de valeur unitaire, le système asservi par le contrôleur PD produit une attitude en régime permanent non-nulle : \theta(\infty) = 1/K_p. Idéalement nous souhaitons que l'attitude en régime permanent soit nulle, c'est la raison pour laquelle nous introduisons le contrôleur PID (proportionnel-intégral-dérivé) :

u(t) = -K_p \ \theta(t) - K_i \int{\theta(t) \ dt} \ - K_d \ \dot \theta(t)

L'équation caractéristique s'écrit cette fois :

[I] \ p^3 + [K_d] \ p^2 + [K_p] \ p + [K_i] = 0 \ \leftrightarrow \ \left( p^2 + 2 \ \zeta \ \omega_n \ p + {\omega_n}^2 \right) \left( p + \frac{1}{T} \right) = 0

\omega_n et \zeta sont toujours la fréquence propre et le facteur d'amortissement, et T est la constante temporelle associée au contrôle intégral. Les gains du contrôleur PID s'expriment : [K_p] = [I] \left( {\omega_n}^2 + \frac{2 \ \zeta \ \omega_n}{T} \right), [K_i] = [I] \ \frac{{\omega_n}^2}{T} et [K_d] = [I] \left( 2 \ \zeta \ \omega_n + \frac{1}{T}\right). On choisit souvent la constante T telle que : T \approx \frac{10}{\zeta \ \omega_n}.

Facteur d'amortissement
images/facteur_amortissement.png
Réponse pour différents facteurs d'amortissement.
Crédit : "Fundamentals of Spacecraft Attitude Determination and Control", F. Landis Markley et John L. Crassidis.