mise à jour : 1 février 2022
mise à jour : 1 février 2022
IntroductionStructures planétairesObservablesTechniques et méthodesLieux de vieAuteursBoite à outils
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Techniques et méthodes

Bruits

Dans le modèle f(\theta,T) + \epsilon, le symbole \epsilon désigne un bruit gaussien. Comme ils apparaissent constamment en détection de planètes extrasolaires et ailleurs, nous allons en donner quelques propriétés.

A une expérience donnée, \epsilon prendra une valeur b imprévisible. La probabilité que la valeur de b soit comprise entre b_1 et b_2 est \int_{b_1}^{b_2} f(x) dxf(x) est la densité de probabilité de \epsilon. Dire que \epsilon est un bruit gaussien veut dire que sa densité est de la forme f(x) = \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^2}{\sigma^2}}\mu et \sigma sont des réels, qui sont égaux respectivement à la moyenne et à l'écart-type de \epsilon. On note souvent \epsilon \sim g(\mu, \sigma^2), qui signifie "\epsilon suit une loi gaussienne de moyenne \mu et de variance \sigma^2. Dans la plupart des cas, le bruit est de moyenne nulle (c'est le cas ici).

Dans le modèle, des bruits d'origines différentes s'additionnent. Sachant que le résidu de l'activité stellaire que nous n'avons pas ajusté \epsilon_S et le bruit de mesure \epsilon_{mes} suiven une certaine loi, quelle loi suivra \epsilon = \epsilon_{S} + \epsilon_{mes} ? Nous pouvons déjà dire que la moyenne de \epsilon sera égale à la somme des moyennes de \epsilon_S et \epsilon_{mes} car l'espérance est un opérateur linéaire. Peut-on dire plus ? Si ces bruits dépendaient l'un de l'autre, la réponse pourrait être complexe. En l'occurrence, la physique de l'étoile cible et les erreurs instrumentales sont totalement indépendantes. On peut montrer que dans ces conditions, la variance de \epsilon est égale à la somme des variances de \epsilon_S et \epsilon_{mes}. Nous pouvons même aller plus loin car la somme de deux variables gaussiennes indépendante est une variable gaussienne. En résumé, \epsilon \sim g\left(\mu_{S} +\mu_{mes}, \sigma_{S}^2+ \sigma_{mes}^2\right) en l'occurrence \mu_S et \mu_{mes} sont nulles.

Lorsqu'on dispose de plusieurs mesures, à l'expérience numéro k on a un certain bruit b_k réalisation d'une variable \epsilon_k de densité f_k. La plupart du temps, on fait l'hypothèse que les brutis \epsilon_k sont indépendants, c'est à dire que la probabilité d'obtenir le bruit b_k à l'expérience k ne dépend pas des valeurs prises aux expériences précédentes et suivantes. Lorsque ce n'est pas le cas on parle de bruits corrélés. Pour les caractériser, on utilise souvent leur densité spectrale de puissance. Un certain profil de densité spectrale correspond à une "couleur" du bruit.

A retenir: la somme de variables gaussienne indépendantes \epsilon = \sum\limits_{k=1}^n \epsilon_k\epsilon_k \sim g\left( \mu_k, \sigma_k^2) est une variable gaussienne suivant la loi g \left( \sum\limits_{k=1}^n \mu_k ,  \frac{1}{n} \sum\limits_{k=1}^n \sigma_k^2 \right).

Page précédentePage suivante