mise à jour : 1 février 2022
mise à jour : 1 février 2022
IntroductionStructures planétairesObservablesTechniques et méthodesLieux de vieAuteursBoite à outils
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Techniques et méthodes

La vraisemblance

Etant donné des paramètres \theta, le modèle global f(\theta,T)+\epsilon est une variable aléatoire: il est somme d'une variable aléatoire valant f(\theta,T) avec une probabilité 1 et d'un vecteur de variables aléatoires gaussienne \epsilon. A ce titre, il a une certaine densité de probabilité que l'on note L(y|\theta). Le symbole | se lisant "sachant". La lettre L vient de Likelihood, qui veut dire vraisemblance en anglais. Il s'agit dans l'idée de la probabilité d'obtenir y = f(\theta,T)+\epsilon pour une valeur de \theta donnée..

La fonction \theta \rightarrow L(y|\theta) est souvent appelée "fonction de vraisemblance". La valeur de \theta maximisant L(y|\theta) est appelé l'estimateur du maximum de vraisemblance. Il a de bonnes propritétés statistiques. En effet, on peut montrer que c'est un estimateur:

Dans notre cas, si les \epsilon_k sont des variables indépendantes, leur densité de probabilité jointe est égale au produit de leurs densité de probabilité. L(y|\theta) = \prod\limits_{k=1}^m g_k(y-f(\theta,t_k))g_k est la densité de probabilité de la variable \epsilon_k. De plus, si ces varibles sont gaussiennes et indépendantes, on a: L(y|\theta) = \prod\limits_{k=1}^m \frac{1}{\sqrt{2\pi}\sigma_k} e^{-\frac{(y-f(\theta,t_k))^2}{\sigma_k^2}} = \frac{1}{(\sqrt{2\pi})^m \prod\limits_{k=1}^m \sigma_k} e^{-\sum\limits_{k=1}^m \frac{(y-f(\theta,t_k))^2}{\sigma_k^2}}}

Page précédentePage suivante