mise à jour : 1 février 2022
mise à jour : 1 février 2022
IntroductionStructures planétairesObservablesTechniques et méthodesLieux de vieAuteursBoite à outils
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Techniques et méthodes

Périodogramme

Exemple de périodogramme
HIP116745_perio.png
En rouge: périodogramme d'un système simulé à deux planètes après soustraction du mouvement propre et de la parallaxe (signal très peu bruité), pour 45 mesures. En bleu: périodogramme du même système sans bruit et avec 10000 observations.

Evaluer les résidus sur une grille d'un modèle à n paramètres, où chacun d'eux peut prendre p valeurs recquiert n^p évaluations, ce qui devient rapidement ingérable numériquement. Les planètes ont un mouvement périodique, donc il est raisonnable de checher des signaux périodiques dans le signal en ne faisant varier que la période du signal recherché. Pour des signaux échantillonnés à intervalles réguliers, on utilise la transformée de Fourier. Le périodogramme est un moyen de checher des signaux périodiques dans des données échantillonnées irrégulièrement. On les notera y. Le périodogramme de Lomb-Scargle d'un signal (y_k)_{k=1..m} échantillonné aux instants (t_j)_{j=1..m} est défini comme suit pour une fréquence quelconque \omega:

P_y(\omega) = \frac{1}{2} \left(  \frac{ \left( \sum\limits_{j=1}^m y_j \cos \omega(t_j-\tau) \right)^2}{ \sum\limits_{j=1}^m \cos^2 \omega(t_j-\tau)}} + \frac{ \left( \sum\limits_{j=1}^m y_j \sin \omega(t_j-\tau) \right)^2}{ \sum\limits_{j=1}^m \sin^2 \omega(t_j-\tau)}} \right) \tau vérifie:

\tan 2 \omega \tau = \frac{\sum\limits_{j=1}^m \sin 2\omega t_j}{\sum\limits_{j=1}^m \cos 2\omega t_j}

Cette expression est équivalente à P_y(\omega) = A^2 +B^2A et B sont les paramètres minimisant \sum\limits_{j=1}^m (y_j-A\cos(\omega t_j) - B\sin(\omega t_j))^2. Le modèle A,B, t \rightarrow A \cos \omega t + B \sin \omega t est linéaire en A, B, on a donc une solution explicite à la minimisation.

Le périodogramme a une propriété très intéressante: si le signal d'entrée est un bruit gaussien \epsilon de variance unité, p_0 une valeur réelle fixée et \omega une fréquence quelconque, la probabilité que P_{\epsilon}(\omega) dépasse p_0 est Pr\{P_\epsilon(\omega)>p_0\} = e^{-p_0}. En d'autres termes, la probabilité qu'une valeur du périodogramme à \omega fixée soit "au moins aussi grand que p_0" par hasard décroît exponentiellement. Supposons que l'on ait un signal y(t) = x(t) + b(t)b(t) est un bruit gaussien de variance unité et nous trouvons un pic de taille p_0, on calcule la probabilité de trouver un pic au moins aussi grand si le signal n'est composé que de bruit: e^{-p_0}. Si cette valeur est petite, on pourra confirmer la détection d'un signal avec une erreur de fausse alarme de e^{-p_0}. Ce procédé n'est autre qu'un test de signification statistique.

La figure montre un exemple de périodogramme. Il s'agit d'un périodogramme d'une des coordonnées d'un signal astrométrique simulé dont on a soustrait le mouvement propre et la parallaxe. En bleu, on représente un périodogramme idéal, sans bruit, avec 10000 observations. Le périodogramme représenté en rouge est lui calculé pour 45 observations. Le pic le plus haut correspond bien à une fréquence réelle. Par contre, le deuxième pic le plus important (à 0.37 rad/s) ne correspond pas à une sinusoïde. C'est ce qu'on appelle un alias de la fréquence principale.

En pratique, la variance du bruit n'est pas unitaire et dépend de l'instant de mesure. On peut corriger ce problème en minimisant un critère pondéré \sum\limits_{j=1}^m \frac{(y_j-A\cos(\omega t_j) - B\sin(\omega t_j))^2}{\sigma_j^2}\sigma_j est la variance du bruit à la mesure j.

Page précédentePage suivante