mise à jour : 1 février 2022
mise à jour : 1 février 2022
IntroductionStructures planétairesObservablesTechniques et méthodesLieux de vieAuteursBoite à outils
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Techniques et méthodes

Loi du chi 2

Nous nous sommes toujours ramenés à des modèles du type: modèle déterministe + bruit gaussien. Afin de vérifier que les observations sont compatibles avec le modèle, on étudie les résidus, définis comme "les observation - le modèle ajusté".

La loi du \chi^2 est un outil commode pour étudier le comportement de plusieurs variables gaussiennes. Considérons d'abord une famille de m variables aléatoires gaussiennes indépendantes (\epsilon_k)_{k=1..m}, de moyenne nulle et de variance unité. On forme la quantité \chi^2_m= \epsilon_1^2 + \epsilon_2^2 +  ... + \epsilon_m^2 . Comme les \epsilon_k sont des variables aléatoires, les \epsilon_k^2 le sont aussi. La somme de variables alétoires étant toujours une variable alétoire, \chi^2_m suit une certaine loi de probabilité. Dans l'analogie avec un programme informatique, la variable alétoire \chi^2_m se comporte comme un programme qui appelle m programmes générant une variables gaussiennes, puis additionne leurs carrés. Elle est appelée loi du\chi^2 à m degrés de liberté. On peut montrer qu'en moyenne une variable gaussienne au carré \epsilon^2 a une moyenne de 1. En conséquence, \chi^2_m vaudra typiquement m.

Pourquoi cette loi serait utile pour notre cas ? Si le modèle est bien ajusté, les résidus doivent se comporter comme un bruit gaussien. En supposant que les erreurs sont toutes indépendantes, de moyenne nulle et de variance unité, les résidus r_k = y-f(\theta,t_k}) en sont une réalisation. Donc R^2=\sum\limits_{k=1}^m r_k^2 est une réalisation d'une loi du \chi^2 à m degrés de liberté. Si R^2 est de l'ordre de m, le modèle est cohérent. Sinon, le modèle ou les paramètres ajustés sont à revoir.

En pratique, les erreurs \epsilon__k ne sont évidemment pas de variance unité et parfois pas indépendantes. Par contre on peut à bon droit supposer qu'elles sont de moyenne nulle. Pour se ramener au cas précédent, on calcule non pas une réalisation de \epsilon_1^2+...+\epsilon_m^2 mais de \chi^2_m'=\epsilon^T \Sigma^{-1} \epsilon\epsilon = \left( \begin{array}{c} \epsilon_1 \\ \epsilon_2 \\ \\ \epsilon_m \end{array} \right) , \epsilon^T est sa transposée et \Sigma est la matrice des variances-covariances de \epsilon. Dans le cas où les \epsilon_k sont indépendantes, la matrice des variances-covariances est diagonale, son k-ème terme diagonal étant \frac{1}{\sigma_k^2}, soit l'inverse de la variance de \epsilon_k.

Page précédentePage suivante