mise à jour : 1 février 2022
mise à jour : 1 février 2022
IntroductionStructures planétairesObservablesTechniques et méthodesLieux de vieAuteursBoite à outils
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Techniques et méthodes

Equation de Kepler

Auteur: Nathan Hara & Jacques Laskar
Anomalies
anomalies2.png
Représentation de l'anomalie vraie v, excentrique E et moyenne M.

Equation de Kepler

L'équation de Kepler est une relation entre l'anomalie excentrique et l'anomalie moyenne, cette page présente un moyen de l'établir. L'aire \mathcal{A}(FAC) est proportionnelle à l'anomalie moyenne M.

\mathcal{A} (AFC) = \frac{M}{2 \pi} \pi a^2 \sqrt{1-e^2} = \frac{1}{2} a^2 \sqrt{1-e^2} M

L'ellipse de la trajectoire est obtenue par une affinité sur l'axe \overrightarrow{Y} de rapport \frac{b}{a} = \sqrt{1-e^2}. Donc

\mathcal{A}(AFC') = \frac{\mathcal{A}(AFC)}{\sqrt{1-e^2}} = \frac{a^2 M}{2}

Par ailleurs en notant E l'angle \widehat{AOC'}

\mathcal{A}(AOC') = \frac{1}{2} a^2 E = \mathcal{A}(FOC') + \mathcal{A}(AFC')

L'aire du triangle FOC' s'obtient facilement car HC' = HC / \sqrt{1-e^2}

\mathcal{A}(FOC') = \frac{1}{2} a^2e \sin E

On a finalement l'équation de Kepler

E - e\sin E = M

Cette équation est "transcendante", en conqéquence il n'existe pas d'expression analytique de E en fonction de M. Cependant, on peut développer E en puissances de M.

Page précédentePage suivante