mise à jour : 1 février 2022
mise à jour : 1 février 2022
IntroductionStructures planétairesObservablesTechniques et méthodesLieux de vieAuteursBoite à outils
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Techniques et méthodes

Exercices

Auteur: Nathan Hara & Jacques Laskar

exerciceConservation de l'énergie

Difficulté : ☆☆  

Question 1)

Pour établir l'équation du mouvement, les conservations du moment cinétique et du vecteur eccentricité suffisent. On a une autre intégrale du mouvement: l'énergie. Considérons deux points matériels S et P de masses respectives M et m. On pose \overrightarrow{r} = \overrightarrow{SP} , r = \|\overrightarrow{r}\| et \mu = \mathcal{G}(m+M) \mathcal{G} est la constante universelle de gravitation.

  1. Montrer que \frac{d^2\overrightarrow{r}}{dt^2} = -\mu \frac{\overrightarrow{r}}{r^3}
  2. Calculer l'énergie potentielle associée à la force de gravitation
  3. On note v = \left\| \frac{d \overrightarrow{r}}{dt}  \right\|. Déduire du théorème de l'énergie mécanique que \frac{1}{2} v^2 - \frac{\mu}{r} est une quantité constante au cours du mouvement
  4. Quel est le point de l'orbite où la vitesse de l'étoile est la plus élevée ? la moins élevée ?

Page précédentePage suivante