Introduction | Structures planétaires | Observables | Techniques et méthodes | Lieux de vie | Auteurs | Boite à outils |
Changement de référentiel |
Les observations sont disponibles dans un référentiel où est la direction d'observation et sont choisis de sorte que le repère est orthonormé direct. Le repère est lui aussi orthormé direct. La matrice de passage du repère orbital au repère d'observation est donc une rotation, que l'on décompose en trois rotations dont les angles ont des noms usuels.
Où:
Soit le barycentre du système {planète+étoile}, on note où sont appelées les constantes de Thiele-Innes. On conserve la notation classique pour ces constantes, qui sautent quelques lettres de l'alphabet pour une raison inconnue des auteurs. La notation n'est en revanche qu'une convention pour ce cours et ne se trouve pas spécialement dans la littérature. On ne donne pas de nom particulier aux éléments de la dernière colonne de la matrice car étant donné que , ils n'apparaissent jamais dans les calculs
On peut caractériser l'orbite par les éléments suivants:
Ces éléments donnent la géométrie de l'orbite. Pour déterminer la position de la planète à un instant donné, il faut de plus connaître l'instant de son passage au périastre . On peut alors calculer connaisant on peut calculer l'anomalie excentrique par l'équation de Kepler, puis l'anomalie vraie . On en déduit la position sur l'ellipse par l'équation donnée page "Loi des aires", . Enfin, la position sur l'orbite est donnée par les rotations explicitées ci-dessus.