mise à jour : 1 février 2022
mise à jour : 1 février 2022
IntroductionStructures planétairesObservablesTechniques et méthodesLieux de vieAuteursBoite à outils
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Techniques et méthodes

Changement de référentiel

Auteur: Nathan Hara & Jacques Laskar
Paramètres d'un mouvement à deux corps newtonien
500px-Orbit1.svg.png
Le plan de référence est ici le plan d'observation.

Les observations sont disponibles dans un référentiel (\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})\overrightarrow{k} est la direction d'observation et (\overrightarrow{i}, \overrightarrow{j}) sont choisis de sorte que le repère est orthonormé direct. Le repère (\overrightarrow{I}, \overrightarrow{J}, \overrightarrow{K}) est lui aussi orthormé direct. La matrice de passage du repère orbital au repère d'observation est donc une rotation, que l'on décompose en trois rotations dont les angles ont des noms usuels.

\left( \begin{array}{cc} x & \dot{x} \\ y & \dot{y} \\ z & \dot{z}  \end{array}  \right) = \mathcal{R}_3(\Omega) \mathcal{R}_1(i) \mathcal{R}_3(\omega)   \left( \begin{array}{cc} X & \dot{X} \\  Y & \dot{Y} \\ Z & \dot{Z}  \end{array}  \right)

Où:

\mathcal{R}_1(\theta) = \left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{array} \right) \quad ; \quad \mathcal{R}_3(\theta) = \left( \begin{array}{ccc} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta &  0 \\ 0 & 0 &  1 \end{array} \right)

Soit B le barycentre du système {planète+étoile}, on note \mathcal{R}_3(\Omega) \mathcal{R}_1(i) \mathcal{R}_3(\omega) = \left( \begin{array}{ccc}  B &  G  & \star  \\ A &  F & \star  \\ C & D & \star  \end{array} \right)A, B, F, G sont appelées les constantes de Thiele-Innes. On conserve la notation classique pour ces constantes, qui sautent quelques lettres de l'alphabet pour une raison inconnue des auteurs. La notation C,D n'est en revanche qu'une convention pour ce cours et ne se trouve pas spécialement dans la littérature. On ne donne pas de nom particulier aux éléments de la dernière colonne de la matrice car étant donné que Z=0, ils n'apparaissent jamais dans les calculs

Paramètres orbitaux classiques

On peut caractériser l'orbite par les éléments suivants:

  • a: le demi-grand axe
  • e: l'excentricité
  • P: la période
  • \omega: l'argument du périastre
  • i: l'inclinaison
  • \Omega: l'ascension droite au noeud ascendant

Ces éléments donnent la géométrie de l'orbite. Pour déterminer la position de la planète à un instant t donné, il faut de plus connaître l'instant de son passage au périastre t_p. On peut alors calculer M = 2\pi \frac{t-t_p}{P} connaisant e on peut calculer l'anomalie excentrique E par l'équation de Kepler, puis l'anomalie vraie v. On en déduit la position sur l'ellipse par l'équation donnée page "Loi des aires", r(v) = \frac{a(1-e^2)}{1+e \cos v} . Enfin, la position sur l'orbite est donnée par les rotations explicitées ci-dessus.

Page précédentePage suivante