Se tester

Auteur: Gary Quinsac

Présentation des exercices

Cette section doit vous permettre de vous exercer sur certaines des notions présentées dans ce cours. Un QCM reprend la première partie du cours, soit la découverte d'une mission spatiale, du standard CubeSat et du système de contrôle d'attitude et d'orbite. Des exercices plus poussés sont ensuite proposés, recouvrant la représentation d'attitude, les équations du mouvement, les couples perturbateurs et le contrôle d'attitude, la propulsion et enfin les lois de commande. La majeure partie des aspects abordés dans ce cours trouvent ainsi un écho dans ces exercices.


QCM sur la partie "découvrir"

Auteur: Gary Quinsac

qcmDécouvrir

Ce QCM reprend des notions de la partie "Découvrir". Pour certaines questions plusieurs réponses sont possibles.

Difficulté :   

1)  Comment nomme-t-on une orbite circulaire autour de la Terre à une altitude de 300 km ?




2)  Dans quelle classe de satellite se trouvent les CubeSats ?



3)  Quelle est la phase de construction d'un véhicule spatial ?







4)  Quels sont les avantages offerts par le standard CubeSat ?



5)  Quels sous-systèmes font partie de la plateforme du satellite ?





6)  Quels sont les domaines de longueur d'onde absorbés par l'atmosphère ?




7)  Quelle est la masse d'un CubeSat 6U d'après les standards qui vous ont été présentés ?




8)  Quel est le secteur d'utilisation des CubeSats montrant parfaitement l'adoption généralisée de ce standard ?



9)  Quel est le type de mouvement en jeu lorsque l'on parle de contrôle d'attitude ?


10)  Comment nomme-t-on le sous-système chargé de modifier la trajectoire du satellite ?




Exercices : Représentation d'attitude

Auteur: Gary Quinsac

exerciceMatrice du Cosinus Directeur

Difficulté :   

On souhaite montrer que la MCD est une matrice orthonormale, c'est-à-dire que [T] \ [T]^T = [I] = [T]^T \ [T].

Soit la MCD [T]_{B|A} entre deux référentiels orthogonaux décrits par les vecteurs unitaires \{ \bold a_1, \bold a_2, \bold a_3 \}^T et \{ \bold b_1, \bold b_2, \bold b_3 \}^T :

\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = [T]_{B|A} \ \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}

Question 1)

Ecrire le vecteur transposé de \bold B = (B_i).

Question 2)

Calculer le produit \bold B \ {\bold B}^T et conclure.

Auteur: Gary Quinsac

exerciceAngles d'Euler

Difficulté :   

Cet exercice a pour but de démontrer l'expression de la MCD à partir d'une certaine séquence d'angles d'Euler. On reprend la notation du cours en nommant \theta_1, \theta_2 et \theta_3 les trois angles d'Euler.

Question 1)

Démontrer qu'en choisissant la séquence [T(\theta_1)]_1 \leftarrow [T(\theta_2)]_2 \leftarrow [T(\theta_3)]_3 afin de passer du référentiel A au référentiel B, on obtient bien la formule présentée dans le cours :

[T]_{B|A} = \begin{pmatrix} c_{\theta_2} c_{\theta_3} & c_{\theta_2} s_{\theta_3} & -s_{\theta_2} \\ s_{\theta_1} s_{\theta_2} c_{\theta_3} - c_{\theta_1} s_{\theta_3} & s_{\theta_1} s_{\theta_2} s_{\theta_3} + c_{\theta_1} c_{\theta_3} & s_{\theta_1} c_{\theta_2} \\ c_{\theta_1} s_{\theta_2} c_{\theta_3} +s_{\theta_1} s_{\theta_3} & c_{\theta_1} s_{\theta_2} s_{\theta_3} - s_{\theta_1} c_{\theta_3} & c_{\theta_1} c_{\theta_2} \end{pmatrix}

Question 2)

Considérons maintenant la séquence suivante : [T(\theta_1)]_1 \leftarrow [T(\theta_3)]_3 \leftarrow [T(\theta_2)]_2. Exprimer la MCD associée à cette séquence.

Auteur: Gary Quinsac inspiré de "Space Vehicle Dynamics and Control" de Bong Wie.

exerciceQuaternions

Difficulté :   

Considérons la séquence de rotations fixées par rapport à un satellite allant du référentiel A au référentiel B :

[T(\theta_1)]_1 \leftarrow [T(\theta_2)]_2 \leftarrow [T(\theta_3)]_3

Les quaternions associés à ces rotations sont :

[T(\theta_1)]_1 = \begin{pmatrix} sin(\theta_1 / 2) \\ 0 \\ 0 \\ cos(\theta_1 / 2) \end{pmatrix}, [T(\theta_1)]_1 = \begin{pmatrix} 0 \\ sin(\theta_2 / 2) \\ 0 \\ cos(\theta_2 / 2) \end{pmatrix}, [T(\theta_1)]_1 = \begin{pmatrix} 0 \\ 0 \\ sin(\theta_3 / 2) \\ cos(\theta_3 / 2) \end{pmatrix}

Question 1)

Montrer que les angles d'Euler de cette séquence de rotation sont reliés aux quaternions de la manière suivante :

\begin{pmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{pmatrix} = \begin{pmatrix} c_1 c_2 c_3 + s_1 s_2 s_3 \\ s_1 c_2 c_3 - c_1 s_2 s_3 \\ c_1 s_2 c_3 + s_1 c_2 s_3 \\ c_1 c_2 s_3 - s_1 s_2 c_3 \end{pmatrix}

s_i = sin(\theta_i / 2) et c_i = cos(\theta_i / 2)

Question 2)

Vérifier que pour des angles infinitésimaux on obtient un quaternion très simple.


Exercices : Equations du mouvement

Auteur: Gary Quinsac

exerciceCinématique d'attitude avec la MCD

Difficulté : ☆☆  

On souhaite démontrer l'équation de la cinématique exprimée avec la MCD.

\frac{d}{dt}([T]) = -[\Omega] \ [T] avec [\Omega] = \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix} et [T] = \begin{pmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} & T_{23} \\ T_{31} & T_{32} & T_{33} \end{pmatrix}

Soit la MCD [T] entre deux référentiels orthogonaux décrits par les vecteurs unitaires \{\bold{a}_1, \bold{a}_2, \bold{a}_3\}^T et \{\bold{b}_1, \bold{b}_2, \bold{b}_3\}^T.

Question 1)

Rappeler la propriété principale de la MCD [T] .

Question 2)

Exprimer la dérivée de l'équation exprimant un vecteur du référentiel (B) en fonction d'un vecteur du référentiel (A).

Question 3)

Obtenir l'équation de la cinématique exprimée avec la MCD.

Question 4)

À partir de l'équation de la cinématique que nous venons de démontrer, exprimer les différentes coordonnées du vecteur vitesse angulaire.

Auteur: Gary Quinsac

exerciceCinématique d'attitude avec les angles d'Euler

Difficulté : ☆☆  

Cet exercice cherche à établir les équations de la cinématique pour certaines représentations d'Euler. Les premières questions considèrent la séquence d'Euler permettant de passer du référentiel (A) au référentiel (B) suivante :[T(\theta_1)]_1 \leftarrow [T(\theta_2)]_2 \leftarrow [T(\theta_3)]_3.

Question 1)

Ecrire les trois vecteurs vitesse angulaire correspondant à chaque transformation élémentaire en fonction des dérivées des angles d'Euler.

Question 2)

Exprimer le vecteur de vitesse angulaire {\boldsymbol\omega}_{B|A} en fonction des vecteurs de vitesse angulaire précédents.

Question 3)

Reformuler cette équation afin de faire apparaître les vecteurs de base des différents repères.

Question 4)

Exprimer les vecteurs de base des repères A'' et A' en fonction de ceux de (B).

Question 5)

Montrer la relation de la cinématique pour cette séquence d'Euler :

\begin{pmatrix} \dot{\theta_1} \\ \dot{\theta_2} \\ \dot{\theta_3} \end{pmatrix} = \frac{1}{\textup{cos}(\theta_2)} \begin{pmatrix} \textup{cos}(\theta_2) & \textup{sin}(\theta_1) \ \textup{sin}(\theta_2) & \textup{cos}(\theta_1) \ \textup{sin}(\theta_2) \\ 0 & \textup{cos}(\theta_1) \ \textup{cos}(\theta_2) & -\textup{sin}(\theta_1) \ \textup{cos}(\theta_2) \\ 0 & \textup{sin}(\theta_1) & \textup{cos}(\theta_1) \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix}

Question 6)

Considérons maintenant la séquence suivante : [T(\theta_1)]_1 \leftarrow [T(\theta_3)]_3 \leftarrow [T(\theta_2)]_2. Exprimer alors l'équation de la cinématique.

Auteur: Gary Quinsac

exerciceCinématique d'attitude avec les quaternions

Difficulté : ☆☆  

Il est maintenant question de démontrer l'équation de la cinématique avec les quaternions.

Question 1)

Reprendre la forme de l'équation de la cinématique trouvée dans la dernière question du premier exercice sur les équations du mouvement :

\begin{cases} \omega_1 = \dot C_{21} C_{31} + \dot C_{22} C_{32} + \dot C_{23} C_{33} \\ \omega_2 =  \dot C_{31} C_{11} + \dot C_{32} C_{12} + \dot C_{33} C_{13} \\ \omega_3 = \dot C_{11} C_{21} + \dot C_{12} C_{22} + \dot C_{13} C_{23} \end{cases}

Substituer les coefficients de la MCD par leur forme avec les quaternons.

Question 2)

Exprimer la dérivée de l'équation contraignant les quaternions.

Question 3)

Regrouper ces 4 équations sous forme matricielle.

Question 4)

Utiliser une propriété remarquable de la matrice de quaternion obtenue dans la questions précédente pour exprimer la dérivée du quaternion.

Question 5)

Réécrire l'équation afin d'obtenir l'équation de la cinématique avec les quaternions.


Exercice : Couples perturbateurs sur un CubeSat

Auteur: Gary Quinsac

exerciceCouples perturbateurs agissant sur un CubeSat

Difficulté : ☆☆  

Une mission scientifique nécessite l'envoie d'un CubeSat 3U sur une orbite circulaire à 300km d'altitude (ce qui correspond à une vitesse de 7726 m/s). On considère que le centre de masse de satellite se trouve décalé du centre géométrique de + [1; 1; 2] cm et que la surface du satellite est homogène. Étant donnée l'altitude, il est possible d'utiliser le champ magnétique pour effectuer le contrôle de l'attitude du CubeSat. Une combinaison de trois magnétocoupleurs, chacun étant orienté selon un axe du satellite, est proposée. Le courant maximum parcourant les bobines est ±0,2 A et le rayon du fil mesure 10,4 mm.

Voici différentes données nécessaires :

Données
Masse volumique de l'atmosphère à 300 km\rho = 2 \times 10^{-11} \ \textup{kg}.\textup{m}^{-3}
Coefficient de trainéeC_x = 2
Constante gravitationnelle de la Terre\mu = 398,6 \times 10^3 \ \textup{km}^{3} . \textup{s}^{-2}
Rayon de la TerreR_{\oplus} = 6,371 \times 10^3 \ \textup{km}
Irradiance solaire moyenne\phi_s = 1362 \ \textup{W}. \textup{m}{-2}
Coefficient de réflexion moyen du satelliteq = 0,9
Champ magnétique terrestre à 300 kmB = 2,6 \times 10^{-5} \ \textup{Tesla}
Dipôle résiduel du satelliteD = 4 \times 10^{-4} \ \textup{A} . \textup{m}^2
Courant maximum dans magnéto-coupleursI_{MTQ} = 0,2 \ \textup{A}
Diamètre de la bobine des magnéto-coupleursD = 10 \ \textup{mm}
CubeSat 3U
images/exercice-cubesat.png
CubeSat 3U de longueur l, de côtés a et b et de moments d'inertie Ixx, Iyy et Izz.
Crédit : Gary Quinsac
Question 1)

Que signifie le fait que la surface du satellite est homogène ?

Question 2)

Estimer les dimensions et la masse totale du satellite.

Question 3)

Quels sont les principaux moments d'inertie du satellite ?

Question 4)

Identifier les couples perturbateurs.

Question 5)

Exprimer les couples perturbateurs maximums créés par les différentes perturbations agissant sur le satellite si son axe +Y est aligné avec sa vitesse. On utilisera les notations données en introduction de l'exercice.

Question 6)

Estimer l'ordre de grandeur de la somme de tous les couples perturbateurs agissant sur le satellite.

Question 7)

Combien de spires la bobine du magnétocoupleur doit-elle contenir pour contrebalancer le couple perturbateur précédemment estimé ?


Exercice : Propulsion

Auteur: Gary Quinsac

exerciceExercice

Difficulté :   

On reprend le CubeSat présenté lors de l'exercice précédent. Cette fois-ci, nous nous plaçons dans le cas où celui-ci doit effectuer une manœuvre orbitale nécessitant un incrément de vitesse de 50 m/s. Six systèmes de propulsion vous sont proposés, chacun étant défini par sa masse sèche Msèche (masse du système de propulsion sans le carburant), son impulsion spécifique Isp, sa force de poussée F et sa consommation électrique P.

Systèmes de propulsion
Type de propulsionModèleMsèche [kg]Isp [s]F [N]P [W]
Gaz froidPalomar MiPS0,89503,5.10-25
Mono-carburantBGT-X51,242205.10-120
Bi-carburantPM2001,102855.10-16
ÉlectromagnétiquePPTCUP0,286704.10-52
ÉlectrostatiqueIFM Nano0,6438003,5.10-432
Question 1)

Quel lien peut-on faire entre la vitesse d'expulsion du carburant l'impulsion spécifique Isp ?

Question 2)

Estimer la quantité de carburant nécessaire pour effectuer la manœuvre souhaitée avec chacun des systèmes de propulsion.

Question 3)

Sachant que l'on cherche généralement à éviter d'allouer plus de 33% de la masse d'un satellite au système de propulsion

Question 4)

La puissance électrique disponible à bord d'un CubeSat 3U recouvert de panneaux solaires en orbite autour de la Terre est estimée à 7 W. Qu'est-ce que cela change au niveau de vos choix ?

Question 5)

En supposant que l'efficacité de la manœuvre ne dépend pas du lieu où celle-ci est effectuée, c'est à dire du moment, combien durerait-elle pour chacun des systèmes de propulsion proposés ? Cette hypothèse est fausse dans de nombreux cas, notamment lorsque les forces de poussée en jeu sont faibles et les manœuvres importantes (ce qui est le cas ici).


Exercices : Lois de commande

Auteur: Gary Quinsac

exerciceÉtude d'un ressort

Difficulté :   

Cet exercice a pour but de vous entraîner à utiliser les transformations de Laplace pour résoudre une équation différentielle.

Considérons une masse m accrochée à un ressort de constante de rappel K. On mesure le déplacement vertical de la masse, provoqué par une stimulation u(t), par la grandeur x. L'installation est illustrée par cette figure.

Ressort
images/ressort.png
Crédit : Gary Quinsac
Question 1)

Quelle est l'équation de déplacement de la masse ?

Question 2)

On veut étudier le cas d'une stimulation impulsionnelle. Que devient u(t) ?

Question 3)

Exprimer la fonction de transfert du système.

Question 4)

Effectuer la transformée de Laplace inverse de la fonction de transfert afin d'exprimer le déplacement issu d'une stimulation impulsionnelle dans le domaine temporel.

Question 5)

Supposons maintenant que la stimulation n'est plus impulsionnelle mais une rampe u(t) =t. Afin d'obtenir la réponse dans le domaine temporel, il faudrait faire le produit de convolution de cette rampe avec la réponse impulsionnelle :

t \ast \frac{1}{\sqrt{K \ m}} sin(\sqrt{\frac{K}{m}} \ t)

Passer par la transformée de Foutier.

Auteur: Gary Quinsac

exerciceReprésentation de la boucle de contrôle d'attitude

Nous allons retrouver la fonction de transfert de la boucle de contrôle d'attitude :

\frac{Y(p)}{R(p)} = \frac{G_c(p) \ G_p(p)}{1+G_c(p) \ G_p(p) \ C(p)}

On note R(p) le signal de référence, Y(p) le signal de sortie, D(p) la perturbation, U(p) le signal de contrôle, Gc(p) le contrôleur, E(p) l'erreur, Gp(p) le matériel à contrôler et C(p) la dynamique des capteurs.

Question 1)

Exprimer le signal de sortie en fonction du signal de contrôle.

Question 2)

Sachant que l'on considère que les perturbations sont nulles, exprimer le signal de contrôle en fonction de l'erreur.

Question 3)

Appliquer la même approche pour trouver l'expression de l'erreur.

Question 4)

Réorganiser les résultats précédents afin de retrouver l'expression de la fonction de transfert.


Réponses aux QCM

pages_nanosats-setester/qcm-partie-decouvrir.html

QCM 'Découvrir'


Réponses aux exercices

pages_nanosats/exercice-representation-attitude.html

Exercice 'Angles d'Euler'


pages_nanosats/exercice-representation-attitude.html

Exercice 'Quaternions'


pages_nanosats/exercice-equations-mouvement.html

Exercice 'Cinématique d'attitude avec la MCD'


pages_nanosats/exercice-equations-mouvement.html

Exercice 'Cinématique d'attitude avec les angles d'Euler'


pages_nanosats/exercice-equations-mouvement.html

Exercice 'Cinématique d'attitude avec les quaternions'


pages_nanosats/exercice-couples-perturbateurs.html

Exercice 'Couples perturbateurs agissant sur un CubeSat'


pages_nanosats/exercice-propulsion.html

Exercice


pages_nanosats/exercice-lois-de-commande.html

Exercice 'Étude d'un ressort'