mise à jour : 1 février 2022
mise à jour : 1 février 2022
IntroductionStructures planétairesObservablesTechniques et méthodesLieux de vieAuteursBoite à outils
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Techniques et méthodes

Exercice : Propulsion

Auteur: Gary Quinsac
Auteur: Gary Quinsac

exerciceExercice

Difficulté :   

On reprend le CubeSat présenté lors de l'exercice précédent. Cette fois-ci, nous nous plaçons dans le cas où celui-ci doit effectuer une manœuvre orbitale nécessitant un incrément de vitesse de 50 m/s. Six systèmes de propulsion vous sont proposés, chacun étant défini par sa masse sèche Msèche (masse du système de propulsion sans le carburant), son impulsion spécifique Isp, sa force de poussée F et sa consommation électrique P.

Systèmes de propulsion
Type de propulsionModèleMsèche [kg]Isp [s]F [N]P [W]
Gaz froidPalomar MiPS0,89503,5.10-25
Mono-carburantBGT-X51,242205.10-120
Bi-carburantPM2001,102855.10-16
ÉlectromagnétiquePPTCUP0,286704.10-52
ÉlectrostatiqueIFM Nano0,6438003,5.10-432
Question 1)

Quel lien peut-on faire entre la vitesse d'expulsion du carburant l'impulsion spécifique Isp ?

Aide

Question 2)

Estimer la quantité de carburant nécessaire pour effectuer la manœuvre souhaitée avec chacun des systèmes de propulsion.

Aide

Question 3)

Sachant que l'on cherche généralement à éviter d'allouer plus de 33% de la masse d'un satellite au système de propulsion

Aide

Question 4)

La puissance électrique disponible à bord d'un CubeSat 3U recouvert de panneaux solaires en orbite autour de la Terre est estimée à 7 W. Qu'est-ce que cela change au niveau de vos choix ?

Question 5)

En supposant que l'efficacité de la manœuvre ne dépend pas du lieu où celle-ci est effectuée, c'est à dire du moment, combien durerait-elle pour chacun des systèmes de propulsion proposés ? Cette hypothèse est fausse dans de nombreux cas, notamment lorsque les forces de poussée en jeu sont faibles et les manœuvres importantes (ce qui est le cas ici).

Aide

Page précédentePage suivante