mise à jour : 1 février 2022
mise à jour : 1 février 2022
IntroductionStructures planétairesObservablesTechniques et méthodesLieux de vieAuteursBoite à outils
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Techniques et méthodes

Convection et turbulence

Certains processus de mélange de l'air interviennent à des échelles plus petites que celles résolues par la dynamique. Ces processus sont essentiellement la convection, qui peut se structurer en cellules de plusieurs de kilomètres, et la turbulence, qui agit depuis les échelles microscopiques jusqu'à quelques dizaines de mètres.

Une méthode simple pour représenter la convection consiste à utiliser un modèle dit d'ajustement convectif, qui va corriger le profil vertical de température vers un profil adiabatique stable. Autrement dit, on force la température potentielle à être constante là où le profil est instable. Bien que ce soit effectivement ce que la convection produit à grande échelle, un tel modèle ne tient pas compte des ascendances et descendances verticales dans la couche limite planétaire. De nouveaux modèles, appelés flux de masse, donnent une paramétrisation des mouvements d'air dans une parcelle physique de GCM. On peut ainsi tenir compte de la variation de densité de l'air si une espèce condense, ce qui va générer des mouvements verticaux.

La turbulence est le mouvement chaotique de l'air en dehors du régime laminaire. On en tient compte avec une paramétrisation qui donne l'effet des mouvements turbulents à grande échelle. Ceci est particulièrement pertinent pour les mouvements proche du sol, où la différence de température entre la surface chauffée par le soleil et l'atmosphère crée de la turbulence pendant le jour.

convection.jpg
Ce schéma représente les flux de masse convectifs tels que paramétrisés dans un GCM. w : vitesse verticale. Le flux de masse f dépend de l'ascension a (depuis la surface) et e (au dessus), ainsi que de la descendance d.
Crédit : Rio et Hourdin, 2008
Page précédentePage suivante