mise à jour : 1 février 2022
mise à jour : 1 février 2022
IntroductionStructures planétairesObservablesTechniques et méthodesLieux de vieAuteursBoite à outils
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Techniques et méthodes

Aérosols et nuages

image 1image 2
Comprendre/marsclouds.jpg
Des nuages de cristaux d'eau dans l'atmosphère de Mars vus par la sonde Phoenix.
Crédit : Wikipédia

On a vu à quel point les aérosols jouent un rôle important en raison du transfert radiatif. Au-delà de leur impact sur les températures, leur étude en soi nous permet de mieux comprendre comment certaines espèces sont transportées à grande échelle et se déposent en surface.

Un aérosol est transporté horizontalement par la dynamique en tant que traceur. Dans la partie physique, on cherche à comprendre, en plus de leur effet radiatif, comment ils vont se former et se répartir sur l'axe vertical. Pour cela, on doit disposer d'une modélisation qui nous permette de calculer les tailles des particules des aérosols. Cette taille peut être établie de manière empirique, ou calculée à partir d'équations décrivant les processus de changement de phase.

Ces aérosols peuvent servir de noyaux de condensation (ou CCN) sur lesquels peuvent venir se condenser certaines espèces gazeuses, pour ensuite former des nuages. C'est par exemple le cas avec la formation de nuages d'eau (sous forme de cristaux de glace ou de gouttelettes liquides) sur Terre ou encore de nuages de glace de dioxyde de carbone (CO2) sur Mars. Sur certaines exoplanètes, on a même par exemple observé des nuages de chlorure de potassium ou de sulfure de zinc. Comme nous l'enseigne si bien la Terre, les nuages ont un rôle essentiel sur le bilan radiatif des planètes.

Lors d'un changement de phase (gaz solide/liquide), la libération de chaleur latente doit également être prise en compte. La prise en compte de cet effet est notamment critique pour un GCM terrestre, étant données les grandes quantités d'eau pouvant s'évaporer ou se condenser dans l'atmosphère de notre planète. C'est par exemple un point clé pour comprendre l'échange de chaleur des basses vers les moyennes latitudes terrestres.

En pratique, la discrétisation d'un GCM repose sur des cellules de grande taille, qui représentent l'état moyen de l'atmosphère en leur sein. Pour représenter l'effet radiatif des nuages dans l'atmosphère d'une planète, il faut calculer proprement la fraction nuageuse dans chaque cellule du GCM, c'est-à-dire calculer la proportion (de la surface horizontale) de cette cellule où se trouve les nuages. Il existe un certain nombre de techniques plus ou moins sophistiquées qui permettent de traiter ce problème de recouvrement, mais cela dépasse le cadre de ce cours.

Page précédentePage suivante