mise à jour : 1 février 2022
mise à jour : 1 février 2022
IntroductionStructures planétairesObservablesTechniques et méthodesLieux de vieAuteursBoite à outils
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Techniques et méthodes

Transfert radiatif

Comprendre/spectre.png
Une portion du spectre en absorption de l'air martien. On ne peut pas utiliser explicitement chaque ligne d'absorption dans le code radiatif. Un tel spectre doit être simplifié.
Crédit : Mischna, Lee, Richardson 2012

Le transfert radiatif dans un GCM est une paramétrisation qui vise à calculer l'impact du rayonnement sur l'atmosphère. In fine, le rayonnement donne lieu à des taux de chauffage ou de refroidissement de l'air, qui varient spatialement et temporellement. Le transfert radiatif est un point crucial pour le réalisme d'un GCM. En effet, il est le moteur de la circulation atmosphérique qui, en provoquant des gradients de température à l'échelle globale, va forcer tous les mouvements à grande échelle.

Le taux de chauffage ou de refroidissement atmosphérique provient de l'interaction entre d'une part le rayonnement et d'autre part deux entités :

Pour compliquer les choses, le connaissance du rayonnement lui-même dépend de ces deux entités. En haut de l'atmosphère, le rayonnement provient bien entendu de l'étoile. Dans l'atmosphère, ce rayonnement provient à la fois de l'étoile, en ayant été en partie absorbé ou diffusé par les gaz et les aérosols, et à la fois des gaz et aérosols eux-mêmes par émission thermique.

Il existe trois types de méthodes pour calculer le transfert radiatif à travers des gaz dans un GCM. Elles nécessitent avant tout une bonne connaissance du spectre du mélange de gaz présent dans l'atmosphère. Ce spectre est obtenu au moyen de simulateurs spécifiques, et vaut pour une température, une pression et une composition atmosphérique données. On pourrait d'abord naïvement tenter de calculer la contribution de chaque longueur d'onde au bilan radiatif global, mais c'est en pratique impossible car un tel calcul prendrait trop de temps pour les besoins d'un GCM. Au lieu de cela, il faut faire des simplifications. La plus simple est d'utiliser un modèle par bandes, dans lequel le flux radiatif est moyenné sur différents intervalles de longueurs d'onde. Une amélioration de cette méthode, appelée puissance nettes échangées, consiste à ne pas considérer les flux radiatifs du rayonnement, mais les échanges entre chaque niveau vertical de la colonne physique du GCM. Enfin, la méthode des distributions k-corrélées consiste à classer les lignes d'absorption du spectre par intensité croissante, puis à les interpoler par une fonction analytique. On passe ainsi de données spectrales très précises mais en nombre important et donc difficilement exploitables, à une approximation décrite par quelques paramètres et rapide en utilisation.

Le transfert radiatif des aérosols nécessite de connaître leur taille et leur composition afin de paramétriser leur effet sur la température atmosphérique. On peut employer les techniques précédemment décrites pour les gaz. Une technique largement employée est la division en bandes dans le spectre visible et infrarouge.

Pour aller plus loin, un GCM martien développé par la Nasa fournit une documentation sur le transfert radiatif d'un modèle.

Page précédentePage suivante