Introduction | Structures planétaires | Observables | Techniques et méthodes | Lieux de vie | Auteurs | Boite à outils |
Expression des gradients adiabatiques |
Lorsqu'une parcelle de gaz se déplace verticalement de façon adiabatique, sa température varie sous l'effet des variations de pression. Si l'on considère un déplacement élémentaire entre l'altitude et d'une masse d'un gaz de capacité calorifique à pression constante Cp, d'entropie S et de volume V à la pression P et à la température T, un bilan de son enthalpie H donne puisque (déplacement adiabatique). La variation de pression étant reliée au déplacement vertical selon la loi hydrostatique , on obtient alors en posant , appelé gradient adiabatique (sec). La détente adiabatique d'une parcelle de gaz ascendante conduit donc à un refroidissement proportionnel à la différence d'altitude selon le gradient adiabatique.
Une autre façon, peut-être plus intuitive, de considérer ce phénomène est d'interpréter la relation intermédiaire obtenue : la variation d'enthalpie du gaz (son "énergie thermique" en tenant compte des forces de pression) est directement reliée à sa variation d'énergie potentielle. Faire monter une parcelle de gaz lui coûte de l'énergie potentielle, ce qui est prélevé sur l'énergie thermique interne de ce gaz en l'absence de chaleur communiquée depuis l'extérieur.
Certaines atmosphères comportent des espèces chimiques condensables. L'exemple par excellence est la vapeur d'eau sur Terre, qui peut se condenser en glace ou un eau liquide. On rencontre aussi ce cas de figure sur Titan avec cette fois le méthane, ou encore dans les atmosphères des géantes gazeuses au niveau de leurs couches nuageuses. Le bilan précédent doit alors être modifié pour tenir compte de la libération de chaleur latente causée par le changement d'état qui peut arriver lorsque l'espèce condensable est saturée.
Le nouveau bilan d'enthalpie est alors donné par où désigne l'enthalpie massique de condensation et la masse d'espèce volatile qui se condense au cours du déplacement au sein de la parcelle de gaz. On arrive alors à l'expression suivante pour le nouveau gradient adiabatique (dit gradient adiabatique humide) : où désigne la fraction massique du volatil au sein de la parcelle de gaz. On constate alors que est plus faible que en valeur absolue : la libération de chaleur latente par liquéfaction ou condensation compense partiellement le refroidissement dû à l'ascension.
Vénus | Terre | Mars | Jupiter | Saturne | Uranus | Neptune | Titan | |
---|---|---|---|---|---|---|---|---|
-10.5 | -9.8 | -4.5 | -2 | -0.71 | -0.67 | -0.85 | -1.3 | |
-5 | -0.5 |