Introduction | Structures planétaires | Observables | Techniques et méthodes | Lieux de vie | Auteurs | Boite à outils |
Que mesure-t-on ? |
Le principe de ces techniques de détection est simple, mais pour obtenir la précision désirée il faut prendre en compte une grande quantité d'effets affectant les observations. Les mesures sont issues in fine de capteurs CCD, situés au plan focal d'un télescope ou en sortie d'un spectrographe, respectivement dans les cas de l'astrométrie et de la mesure de vitesses radiales. Ces capteurs fonctionnent par effet photoélectrique: lorsqu'un photon les percute, un électron est émis (si le photon a une énergie supérieure à une certaine limite). Ils sont exposés à la lumière pendant un certain temps appelé temps d'intégration. Le nombre d'électrons reçus pendant ce temps est ensuite compté pixel par pixel. Finalement, on obtient un tableau de nombre: le nombre de photons reçus par pixel de la caméra CCD. A chaque mesure est attachée une erreur, calculée selon une méthode explicitée par l'observateur. On effectue ensuite une série d'opérations mathématiques sur les mesures obtenues pour en extraire l'information souhaitée.
Avant d'arriver sur ces capteurs, les photons passent par les instruments, par l'atmosphère, par le milieu interstellaire. De plus, le mécanisme d'émission des photons par les étoiles est complexe: même si l'étoile était fixe par rapport à l'observateur, son spectre et sa position sembleraient variables. Comme les instruments ne permettent pas de résoudre angulairement l'étoile (elle n'apparait que sur un pixel), on mesure la lumière moyenne de sa photosphère, c'est à dire la fine partie de son enveloppe dont la lumière nous parvient. L'astrométrie est sensible à son photocentre. Enfin, il est possible que la lumière reçue provienne partiellement d'une autre source céleste située à proximité de l'étoile, ou du Soleil.
Chacune de ces étapes affecte le signal reçu, de sorte que l'information recherchée n'en représente qu'une petite partie. Par exemple, la vitese radiale apparente d'une étoile est de l'ordre de quelques dizaines de km/s, les techniques actuelles permettent de réduire le bruit instrumental à un peu moins de 0.3-0.5 m/s, qui est aussi l'ordre de grandeur de l'erreur due à une étoile de type solaire. Le signal d'une planète tellurique est de l'ordre de 0.5 m/s, c'est à dire moins que l'ordre de grandeur du bruit. Pour chercher des signaux de plus en plus faibles, il faut améliorer à la fois la modélisation du signal, des instruments, et des méthodes de traitement de données.