Dans cette partie, nous verrons comment s'établit la structure thermique dans les couches externes fluides (principalement gazeuses, ce que l'on appelle les atmosphères) des planètes, ainsi que les conséquences de l'existence d'une telle structure.
Il est possible de parcourir la partie Découvrir avec un simple bagage de Terminale scientifique ou d'amateur de vulgarisation scientifique. En revanche, la bonne compréhension des phénomènes en jeu et la capacité à calculer même approximativement les conditions moyennes au sein d'une atmosphère planétaire exigent un bagage en physique générale niveau licence, à savoir plus précisément :
L'observation de la seule biosphère connue à jour (celle de la Terre) conduit les exobiologistes à poser comme nécessaire la présence d'eau liquide (ou au moins d'un liquide aux propriétés analogues comme l'ammoniac) à la surface d'une planète pour qu'une chimie prébiotique complexe, puis une activité biologique au sens propre, puisse s'y développer. Si bien que la notion d'habitabilité planétaire est de nos jours quasiment devenue un synonyme de présence possible d'eau liquide.
Or, si la disponibilité de l'eau dans l'Univers ne fait guère de doutes (la molécule H2O étant l'une des plus répandues), la question de son apport sur les planètes telluriques fait encore l'objet de débats. Surtout, la permanence de son état liquide est encore plus difficile à obtenir, et nécessite une fourchette de conditions de pression et de température bien particulières (ainsi, à la pression atmosphérique terrestre, doit-on se trouver entre 0°C et 100°C pour que l'eau puisse demeurer liquide). Les conditions de pression et de température au sein des atmosphères planétaires de leur sommet jusqu'à l'éventuelle surface constituent donc l'un des facteurs essentiels conditionnant les phénomènes pouvant s'y dérouler (qu'ils soient de nature biologique, ou plus simplement chimique ou météorologique).
Une autre question cruciale est celle de la détectabilité de telles planètes dans notre voisinage galactique. Le seul moyen envisageable pour caractériser ces planètes consiste en l'étude spectroscopique (c'est-à-dire, décomposé selon ses différentes "couleurs") du rayonnement qui nous parvient. Ce rayonnement peut nous parvenir principalement par deux processus physiques distincts :
Il existe trois modes de transport de la chaleur au sein des atmosphères planétaires, qui déterminent les variations de température au sein de ces atmosphères :
Une des plus importantes caractéristiques des atmosphères planétaires est leur épaisseur verticale. En toute rigueur, leur densité décroît continûment avec l'altitude jusqu'à rejoindre celle du milieu interplanétaire, si bien qu'il est difficile de leur attribuer une épaisseur bien définie. On peut néanmoins caractériser la rapidité avec laquelle cette densité décroît avec l'altitude (atmosphère plus ou moins bien "tassée" verticalement). Cela définit ce que l'on appelle l'échelle de hauteur atmosphérique, qui représente la différence d'altitude entraînant une division de la pression atmosphérique (liée à la densité) par un facteur constant (). Le lecteur intéressé par une définition quantitative pourra se reporter ici.
Cette échelle de hauteur est le résultat du compromis entre deux phénomènes physiques : la gravitation qui tend à tasser les molécules de l'atmosphère vers le bas, et l'agitation thermique des molécules qui tend à les disperser dans tout l'espace, y compris vers le haut. À ce titre, et toutes choses égales par ailleurs, l'échelle de hauteur atmosphérique est :
Planète (ou satellite) | Vénus | Terre | Mars | Jupiter | Io | Saturne | Titan | Uranus | Neptune | Triton | Pluton |
---|---|---|---|---|---|---|---|---|---|---|---|
Échelle de hauteur (en km) | 16 | 8,4 | 11 | 25 | 7,9 | 48 | 21 | 27 | 22 | 14 | 18 |
Dans le système solaire, les valeurs extrêmes vont de pour la Terre à environ pour Saturne. Ces valeurs sont en général très petites devant le rayon de la planète, si bien que l'on peut négliger la courbure de la planète et considérer l'atmosphère comme une succession de couches planes empilées de bas en haut. C'est ce que l'on appelle l'approximation plan-parallèle.
Là où la convection est le mode de transport dominant d'énergie dans une atmosphère, on constate une décroissance régulière de la température avec l'altitude selon un coefficient (en °C/km ou K/km) appelé gradient adiabatique. En effet, si l'on considère une masse de gaz au cours de son transport dans un courant de convection vertical, celle-ci devra lutter contre la pesanteur et donc fournir de l'énergie pour ce faire. Or, le seul "réservoir" d'énergie d'un gaz parfait réside dans sa capacité calorifique. Il y aura donc une conversion partielle de son énergie thermique (en fait, de son enthalpie puisqu'on y inclut le travail des forces de pression) vers de l'énergie potentielle de pesanteur, et donc une baisse de la température de la parcelle d'air d'autant plus grande que celle-ci aura acquis davantage d'altitude (voir ici pour la démonstration). Si une région de l'atmosphère est soumise à cette circulation et en négligeant les autres modes de transport d'énergie, la température y décroît alors avec l'altitude en suivant ce gradient adiabatique.
En pratique cependant, les atmosphères planétaires ne sont pas constituées que de gaz parfaits, mais comportent des gaz en équilibre avec leur propre phase condensée (liquide ou solide). C'est le cas par exemple sur Terre de la vapeur d'eau qui constitue une proportion variable de l'atmosphère terrestre et se trouve parfois en équilibre avec des gouttes d'eau liquide ou des cristaux de glace d'eau. Ou encore de Titan où c'est le méthane gazeux qui se trouve parfois au contact de gouttes de méthane liquide. En ce cas, il existe un réservoir d'énergie supplémentaire pour une parcelle d'atmosphère en mouvement ascendant, à savoir l'énergie libérée par le gaz condensable lorsqu'il se convertit en gouttelettes liquides ou en cristaux solides, ce que l'on appelle la chaleur latente de condensation. Ce réservoir supplémentaire d'énergie limite alors la baisse de température avec l'altitude vers une valeur plus faible. On parle alors de gradient adiabatique humide, que l'on distingue du gradient adiabatique sec en l'absence de condensation.
La couche atmosphérique où la convection est le mode dominant de transport d'énergie s'appelle la troposphère, caractérisée par la décroissance en température décrite ci-dessus. C'est la couche atmosphérique la plus profonde, au contact de la surface pour les planètes telluriques. Au-dessus de la troposphère, les densités plus faibles rendent le transport d'énergie par rayonnement comparativement plus efficace que la convection, car le milieu dilué devient davantage transparent au rayonnement thermique.
Le corps noir est un objet physique idéal qui absorbe tout le rayonnement électromagnétique qu'il reçoit (sa réflectivité est donc nulle à toutes les longueurs d'onde).
La propriété fondamentale du corps noir est que l'intégralité du rayonnement électromagnétique en provenance de cet objet est d'origine thermique. Le spectre de ce rayonnement ne dépend alors que de la température du corps noir en question. En particulier :
Certains objets réels sont de bonnes approximations du corps noir idéal, du moins sur certains intervalles de longueur d'onde et dès que le rayonnement réfléchi y est négligeable devant l'émission thermique et en l'absence de processus d'émission autres que thermiques. C'est par exemple le cas de la plupart des objets du quotidien dans le domaine infrarouge moyen (pour les longueurs d'onde autour de .), ou encore des étoiles dans le domaine visible.
Il est d'usage de distinguer deux intervalles spectraux différents lorsque les planètes ont une température notablement plus faible que leur étoile (ce qui est toujours le cas dans le système solaire, mais pas toujours pour les planètes extrasolaires !).
La température d'équilibre d'une planète est la température théorique de sa surface (si on suppose cette température uniforme) en l'absence d'atmosphère. C'est une grandeur théorique qui n'a pas vocation à être mesurée, contrairement à la température effective.
La température d'équilibre se détermine à partir d'un simple bilan de rayonnement (visible et thermique). Cela revient à négliger les autres sources d'énergie que le rayonnement de l'étoile hôte (le Soleil pour la Terre par exemple) : géothermie, réactions chimiques ou nucléaires, transitions de phase, etc. Sont pris en compte :
La température de surface influe ici sur le rayonnement thermique. Elle est égale à la température d'équilibre lorsque le bilan est équilibré, à savoir : Puissance lumineuse reçue = Puissance lumineuse réfléchie + Puissance rayonnée thermiquement, ce qui est équivalent à Puissance lumineuse absorbée = Puissance rayonnée thermiquement.
Une remarque importante est que cette définition repose sur l'hypothèse irréaliste d'une température de surface homogène sur l'ensemble de la planète, donc avec une redistribution parfaite de l'énergie. Cette température est donc un outil théorique plus qu'une température physiquement mesurable. Le lecteur intéressé par une approche plus quantitative (mais identique conceptuellement) pourra se reporter ici.
La température effective est une mesure de la puissance émise thermiquement par une planète. Elle se définit comme la température du corps noir (idéal) émettant la même puissance totale (en comptant toutes les longueurs d'onde) que la planète par unité de surface. Contrairement à la température d'équilibre, c'est une grandeur expérimentalement mesurable.
Nous connaissons assez bien le système solaire pour pouvoir mesurer les températures effectives des planètes et les comparer aux températures d'équilibre théoriques. Le résultat est résumé sur le tableau ci-dessous :
Planète (ou satellite) | Mercure | Vénus | Terre | Lune | Mars | Jupiter | Saturne | Titan | Uranus | Neptune |
---|---|---|---|---|---|---|---|---|---|---|
Température d'équilibre (°C) | 161 | -42 | -19 | -2 | -63 | -163 | -192 | -191 | -215 | -227 |
Température effective (°C) | 161 | -42 | -19 | -2 | -63 | -149 | -178 | -191 | -214 | -214 |
Température moyenne de surface (°C) | 161 | 462 | 15 | -2 | -58 | N/A | N/A | -179 | N/A | N/A |
Pour la plupart des planètes extrasolaires (hormis les plus grosses et les plus chaudes), seule la température d'équilibre peut être estimée (en supposant un albédo donné par un modèle théorique). Les ordres de grandeur de ces deux températures sont comparables lorsque la source d'énergie principale de l'atmosphère est le rayonnement de l'étoile hôte, comme c'est le cas dans le système solaire. Pour les planètes telluriques (et le satellite de Saturne Titan), ces deux températures sont mêmes égales car les sources d'énergie interne à la planète ont un effet négligeable sur l'atmosphère, ce qui n'est pas le cas pour les géantes gazeuses.
On constate également sur le tableau précédent que pour les corps possédant une surface solide, la température moyenne de la surface est toujours au moins égale à la température effective (égale pour un corps sans atmosphère comme la Lune ou bien Mercure, supérieure pour ceux possédant une atmosphère). Ce phénomène est appelé effet de serre et sera expliqué plus en détail à la page suivante.
Le phénomène essentiel à l'origine de l'effet de serre au sein d'une atmosphère réside dans la différence d'absorption des rayonnements infrarouge thermique (en provenance de la planète) et visible/UV (en provenance de l'étoile) par les constituants de l'atmosphère. Les constituants gazeux d'une atmosphère (en excluant les particules solides ou liquide en suspension comme les poussières ou les cristaux et gouttelettes des nuages) sont en général transparents pour la lumière visible émise par leur étoile. En revanche, certains de ces gaz (comme la vapeur d'eau H2O, le dioxyde de carbone CO2 ou encore le méthane CH4) absorbent très bien le rayonnement infrarouge d'origine thermique émis par la planète.
Cette différence d'absorption entre les rayonnements conduit à une séparation entre les régions :
Or, le bilan d'énergie de la planète impose que ce soit la couche rayonnant vers l'espace qui soit à la température effective permettant un équilibre entre la puissance reçue et celle absorbée. Il faut donc que l'énergie absorbée en profondeur puisse être transportée jusqu'à cette altitude de rayonnement. Comme l'atmosphère profonde située entre ces deux niveaux est opaque aux infrarouges, le rayonnement n'est pas le mode le plus efficace de transport, et c'est la convection qui prend le relais. Cette atmosphère profonde, s'étendant depuis l'altitude d'émission infrarouge jusqu'en bas (surface ou intérieur planétaire pour les géantes) n'est autre que la troposphère définie précédemment. Afin que ce transport d'énergie par convection puisse avoir lieu, il faut que la température de surface soit plus élevée que celle au sommet de la troposphère selon le gradient adiabatique. La température au sommet de la troposphère étant égale à la température effective, la température de surface est en conséquence plus élevée, ce qui est la définition même de l'effet de serre.
Ce sont les couches atmosphériques situées au-dessus de la troposphère, où la convection joue un rôle négligeable.
La couche atmosphérique située au-dessus de la troposphère est (en général, voir page suivante) appelée mésosphère. Le transport d'énergie s'y fait exclusivement par rayonnement. La température y décroît avec l'altitude en tendant vers une valeur appelée température de peau atmosphérique. Cette décroissance s'y effectue de façon beaucoup plus modérée que dans la troposphère située en dessous et soumise au gradient adiabatique.
Au sommet de la mésosphère, l'atmosphère devient complètement transparente à tous les rayonnements (les rayonnements visible ou IR thermique ne peuvent donc y déposer leur énergie) et extrêmement ténue (la convection est donc inefficace). Le transport d'énergie y est donc assuré faute de mieux par des processus de conduction qui sont eux-mêmes très inefficaces à grande distance. Cette zone connaît donc d'énormes contrastes de température verticaux et horizontaux car l'énergie qui y est déposée par les particules énergétiques de l'espace interplanétaire ou les rayonnements X et γ de l'étoile s'évacue très difficilement, ce qui conduit à l'appellation de thermosphère. La température y croît avec l'altitude, comme montré plus en détail ici.
Certaines atmosphères planétaires possèdent une couche supplémentaire appelée stratosphère située entre la troposphère et la mésosphère. Cette couche est une couche radiative (la convection n'y joue aucun rôle dans le transport vertical de la chaleur) et connaît une inversion de température : la température y croît avec l'altitude ! Cette inversion est causée par une absorption partielle de la lumière et/ou des UV stellaires assez haut dans l'atmosphère, si bien que cette énergie ne peut pas s'évacuer par convection et seulement difficilement par radiation. Il se crée alors une anomalie chaude qui déforme le profil de température, allant jusqu'à l'inversion de température.
Dans le système solaire, Vénus et Mars ne possèdent pas de stratosphère (ces atmosphères principalement constituées de CO2 rayonnent très efficacement en infrarouge le peu de puissance absorbé à haute altitude, si bien que les anomalies de températures n'altèrent pas la forme du profil thermique). La Terre en possède une, causée par l'absorption des UV solaires par l'ozone (O3), sous-produit du dioxygène (O2) d'origine biologique. Les planètes géantes en possèdent également (causée par des composés hydrocarbonés absorbant les UV) ainsi que Titan (par absorption des UV solaires sur les particules du brouillard photochimique produit dans la haute atmosphère).
Nous allons à présent aborder les lois quantitatives permettant de modéliser simplement les profils verticaux de température au sein des atmosphères planétaires. Cela nécessite quelques rappels sur le rayonnement thermique, dit de "corps noir".
L'intensité lumineuse , définie comme la puissance émise par unité de surface émettrice, par angle solide autour de la direction du rayon et par unité de longueur d'onde émise par tout corps noir idéal de température , est donnée par la loi de Planck :
où , et désignent respectivement les constantes fondamentales de Planck, de la vitesse de la lumière et de Maxwell-Boltzmann. Cette fonction possède des propriétés mathématiques aux conséquences importantes pour la suite du cours.
Elle donne la position du maximum en de à température donnée, comme illustré précédemment.
Autrement dit, plus le corps est chaud, et plus il émet principalement à des longueurs d'ondes courtes et ce de façon inversement proportionnelle. Cela justifie la séparation du spectre lumineux en :
La séparation entre les deux domaines est prise de façon conventionnelle autour de . Dans le contexte exoplanétaire, une remarque importante s'impose dès maintenant : la plupart des exoplanètes actuellement connues sont extrêmement chaudes, avec des températures excédant souvent , si bien que la limite entre infrarouge thermique et lumière stellaire est décalée vers de plus courtes longueurs d'onde, voire devient complètement dénuée de sens. Cela empêche notamment d'appliquer tels quels les modèles atmosphériques conçus dans le système solaire qui distinguent ces deux catégories.
Lorsque l'on ne s'intéresse pas au détail du spectre émis par le corps noir, il est souvent intéressant de calculer le flux (c'est à dire la puissance par unité de surface émettrice) total émis par le corps noir dans un demi-espace (par exemple, pour une surface planétaire, vers le haut). Pour cela, il suffit d'intégrer la loi de Planck sur sa variable spectrale , et sur les d'angle solide en question. Le calcul donne alors le résultat suivant, connu sous le nom de loi de Stefan-Boltzmann :
où est connu sous le nom de constante de Stefan-Boltzmann. La puissance émise par un corps noir dépend donc énormément de sa température (une augmentation relative de de sa température entraîne ainsi une augmentation d'environ du flux émis).
Le corps noir est un modèle abstrait que l'on ne rencontre pas dans la vie courante. Le spectre thermique émis par un corps donné se trouvant à l'équilibre thermodynamique à la température peut alors s'exprimer comme où est une grandeur sans dimension appelée émissivité (qui dépend de la température, mais de façon moins marquée que la fonction de Planck si bien que par souci d'alléger les notations, on ne la note pas en général comme on le devrait en toute rigueur).
Considérons un corps noir en contact radiatif avec un corps réel à travers un filtre laissant seulement passer les radiations à la longueur d'onde . On sait qu'une fois l'équilibre thermodynamique atteint, ces deux corps en contact radiatif auront la même température . Si l'on note la fraction du rayonnement incident absorbée par le corps réel, que l'on appelle absorbance, il en renvoie la fraction complémentaire . Un bilan net des flux (nul à l'équilibre) à travers le filtre donne alors la relation , ce qui se simplifie en . C'est la loi de Kirchhoff, que L'on résume souvent en "les bons absorbeurs sont les bons émetteurs".
Cette page développe de façon quantitative les notions vues de façon qualitative ici.
Le bilan radiatif à l'équilibre imposant l'égalité entre la puissance rayonnée par la planète et la puissance absorbée par la planète, on obtient alors l'équation suivante :
qui se résout directement, après simplification du rayon de la planète (ce qui signifie qu'en première approximation, la température d'une planète ne dépend pas de sa taille) en :
ce qui permet de constater que cette température décroît avec la distance à l'étoile, et est proportionnelle à celle de l'étoile. Ainsi, toutes choses égales par ailleurs, pour une étoile naine rouge d'une température moitié de celle du Soleil, il faut pour conserver une température d'équilibre donnée se rapprocher de l'étoile d'un facteur quatre : on peut d'ores et déjà affirmer que les zones habitables autour des petites étoiles de faible température (naines rouges) sont très proches de ces dernières. Notons au passage que la température d'équilibre d'une planète est bornée par celle de son étoile, plus précisément comprise entre (à très grande distance) et à la limite où l'orbite de la planète est tangente à son étoile (et la planète de rayon négligeable devant l'étoile).
Cette équation relie l'augmentation de la pression en descendant avec la masse volumique locale (autrement dit, elle exprime le fait que l'origine physique de la pression au sein des atmosphères est le poids de la colonne de gaz située à la verticale). La différence de pression entre le haut et le bas d'une couche d'épaisseur (la direction verticale étant bien définie en géométrie plan-parallèle) dépend donc de la masse contenue dans un volume de section horizontale et d'épaisseur , d'où, par équilibre des forces verticales s'exerçant sur ce volume
Une simplification par fait donc apparaître : la pression décroît bien avec l'altitude, selon la masse volumique et la gravité locales.
La forme habituelle de cette équation , où désigne la constante des gaz parfaits, P la pression, V le volume occupé, n le nombre de moles et T la température n'est pas vraiment adaptée à une formulation locale (intensive, dirait-on en thermodynamique). Il vaut mieux la présenter sous la forme , où l'on voit apparaître la densité molaire (homogène à des ) locale. Or, cette grandeur est proportionnelle à la masse volumique selon la relation où désigne la masse molaire. Il est alors possible d'exprimer la masse volumique du gaz parfait en fonction des conditions de pression et température locales, ainsi que de la masse molaire du gaz constituant : .
On suppose ici que l'atmosphère est constituée d'un gaz parfait de masse molaire , et que l'atmosphère est de surcroît isotherme à la température selon l'altitude. L'utilisation de l'équation d'état du gaz parfait au sein de l'équilibre hydrostatique donne, par substitution de , avec désignant une grandeur homogène à une altitude. On l'appelle échelle de hauteur, et son interprétation est plus claire en intégrant l'équation différentielle où elle apparaît, avec la condition à la limite inférieure :
L'échelle de hauteur représente donc la hauteur caractéristique avec laquelle la pression décroît avec l'altitude pour tendre vers dans l'espace interplanétaire à grande distance de la planète (mais l'approximation plan-parallèle, ainsi que la thermodynamique usuelle à l'équilibre cessent d'être valides à quelques dizaines d'échelles de hauteur au-dessus de la surface).
Dans le cas d'une atmosphère non isotherme, la résolution formelle est un peu plus complexe, mais l'idée générale d'une décroissance localement exponentielle selon une échelle de hauteur locale dépendant de la température locale reste valable.
On peut reformuler la constante des gaz parfaits selon où désigne la constante de Maxwell-Boltzmann et la constante d'Avogadro, puis simplifier dans l'expression de . On obtient alors où désigne la masse d'une molécule de gaz : une molécule de gaz à la hauteur caractéristique possède donc une énergie potentielle de pesanteur du même ordre que son énergie cinétique microscopique (thermique) moyenne. On comprend donc bien pourquoi représente le compromis entre l'agitation thermique qui tend à disperser les atmosphères ( est croissant avec ), et le poids qui a tendance à tasser les atmosphères vers le bas : décroît avec (atmosphère dense) et (gravité forte).
Dans un modèle purement radiatif d'une colonne d'atmosphère (sans convection ni conduction), il est relativement facile d'estimer l'effet de serre causé par une atmosphère (transparente en lumière visible et partiellement opaque au rayonnement infrarouge thermique) entourant une planète tellurique.
On supposera que la surface possède une émissivité égale à en infrarouge thermique, et que celle de l'atmosphère (directement reliée à son absorbance via la loi de Kirchhoff) est prise constante et égale à dans tout le domaine infrarouge thermique (c'est ce que l'on appelle l'approximation grise). L'atmosphère est considérée ici isotherme à la température . On négligera aussi les flux d'énergie éventuels provenant de l'intérieur de la planète, et on supposera que l'étoile émet de façon négligeable dans l'infrarouge thermique, situé loin de son maximum d'émission dans le visible (ou le proche IR pour les plus froides d'entre elles).
La situation est très simple pour les flux stellaires. désigne le flux moyen à la surface de la planète, qui se déduit du flux à incidence normale appelé constante solaire (ou stellaire) par l'égalité des puissances : (voir le raisonnement définissant la température d'équilibre pour plus de détails, désigne ici le rayon planétaire). On en déduit immédiatement : un facteur 2 s'explique aisément par le fait que seul un hémisphère est éclairé, et l'autre facteur 2 par la moyenne du cosinus de l'angle d'incidence intervenant dans le calcul local du flux.
En vertu de la définition de l'émissivité, l'atmosphère rayonne donc dans chacun des demi-espaces inférieur (vers la surface) et supérieur (vers l'espace). En vertu de la loi de Kirchhoff, cette émissivité est égale à son absorbance, si bien que la fraction complémentaire du rayonnement en provenance de la surface (considérée comme un corps noir) réussit à la traverser, le reste étant absorbé (on néglige les processus de diffusion ici ; seules les émissions et absorptions sont prises en compte).
Le bilan des flux à la surface donne alors à l'équilibre radiatif (synonyme d'égalité entre la somme des flux entrants et la somme des flux sortants) : , tandis que celui au niveau de la couche atmosphérique donne . Nous avons donc deux équations pour les deux inconnues et , et la résolution du système donne alors : et où l'on aura reconnu la température d'équilibre définie précédemment.
Le modèle vu précédemment a l'inconvénient de ne pas pouvoir excéder une augmentation de température à la surface de . Ceci est insuffisant dans le cas des atmosphères très épaisses comme celle de Vénus, où le rapport excède ! Cela signifie que de telles atmosphères ne peuvent se modéliser par une unique couche isotherme, même totalement absorbante aux rayons infrarouges. Il existe différents modèles plus complexes permettant de mieux rendre compte des effets de serre intenses.
Une première idée est d'ajouter, au-dessus de la première couche atmosphérique complètement opaque au rayonnement thermique de la planète, une ou plusieurs couches (la dernière couche immédiatement avant l'espace pouvant être partiellement transparente). Ces différentes couches atmosphériques peuvent alors chacune adopter des températures différentes, et former ainsi un profil de température décroissant avec l'altitude. Il faut ainsi environ une centaine de couches opaques pour rendre compte de la température de surface de Vénus.
L'étude d'un modèle à deux couches atmosphériques fait l'objet du mini-projet associé à ce chapitre.
Une vision plus réaliste mais ne faisant toujours intervenir que des échanges d'énergie par rayonnement consiste à découper l'atmosphère en un mille-feuille constitué d'une infinité de couches atmosphériques infiniment fines (d'un point de vue radiatif). En restant dans l'approximation grise en infrarouge thermique et transparente en lumière visible, il est même possible (mais hors-programme au niveau licence) de démontrer l'expression du profil de température en fonction de la profondeur optique en infrarouge thermique : . Notons que dans ce modèle, on obtient : le seul équilibre radiatif tend à créer une discontinuité de température au niveau de la surface, ce qui déclencherait alors des processus de convection pour y remédier. Un tel contraste thermique est néanmoins observable à la surface des planètes telluriques éclairées par le Soleil, comme une plage sur Terre par beau temps (le sable peut alors être brûlant et l'air frais), ou mieux encore dans les déserts de Mars.
Néanmoins, dans les atmosphères épaisses ou pour expliquer l'existence des stratosphères, l'absorption de la lumière stellaire par l'atmosphère doit être prise en compte (par exemple, seuls quelques pourcents de la lumière solaire atteint directement la surface de Vénus). Des expressions analytiques deviennent alors délicates à trouver, mais des modèles numériques peuvent être utilisés pour déterminer les profils de température dans une colonne d'atmosphère (ce que l'on appelle un modèle 1D radiatif). On peut également profiter de la puissance de calcul des ordinateurs pour abandonner d'autres approximations : il est par exemple indispensable d'abandonner l'approximation grise en infrarouge thermique si l'on veut simuler le spectre du rayonnement thermique émis par la planète.
Lorsqu'une parcelle de gaz se déplace verticalement de façon adiabatique, sa température varie sous l'effet des variations de pression. Si l'on considère un déplacement élémentaire entre l'altitude et d'une masse d'un gaz de capacité calorifique à pression constante Cp, d'entropie S et de volume V à la pression P et à la température T, un bilan de son enthalpie H donne puisque (déplacement adiabatique). La variation de pression étant reliée au déplacement vertical selon la loi hydrostatique , on obtient alors en posant , appelé gradient adiabatique (sec). La détente adiabatique d'une parcelle de gaz ascendante conduit donc à un refroidissement proportionnel à la différence d'altitude selon le gradient adiabatique.
Une autre façon, peut-être plus intuitive, de considérer ce phénomène est d'interpréter la relation intermédiaire obtenue : la variation d'enthalpie du gaz (son "énergie thermique" en tenant compte des forces de pression) est directement reliée à sa variation d'énergie potentielle. Faire monter une parcelle de gaz lui coûte de l'énergie potentielle, ce qui est prélevé sur l'énergie thermique interne de ce gaz en l'absence de chaleur communiquée depuis l'extérieur.
Certaines atmosphères comportent des espèces chimiques condensables. L'exemple par excellence est la vapeur d'eau sur Terre, qui peut se condenser en glace ou un eau liquide. On rencontre aussi ce cas de figure sur Titan avec cette fois le méthane, ou encore dans les atmosphères des géantes gazeuses au niveau de leurs couches nuageuses. Le bilan précédent doit alors être modifié pour tenir compte de la libération de chaleur latente causée par le changement d'état qui peut arriver lorsque l'espèce condensable est saturée.
Le nouveau bilan d'enthalpie est alors donné par où désigne l'enthalpie massique de condensation et la masse d'espèce volatile qui se condense au cours du déplacement au sein de la parcelle de gaz. On arrive alors à l'expression suivante pour le nouveau gradient adiabatique (dit gradient adiabatique humide) : où désigne la fraction massique du volatil au sein de la parcelle de gaz. On constate alors que est plus faible que en valeur absolue : la libération de chaleur latente par liquéfaction ou condensation compense partiellement le refroidissement dû à l'ascension.
Vénus | Terre | Mars | Jupiter | Saturne | Uranus | Neptune | Titan | |
---|---|---|---|---|---|---|---|---|
-10.5 | -9.8 | -4.5 | -2 | -0.71 | -0.67 | -0.85 | -1.3 | |
-5 | -0.5 |
La comparaison entre le profil thermique à un instant donné et le gradient adiabatique au même endroit permet de connaître la stabilité de l'atmosphère vis-à-vis des phénomènes de convection. Supposons pour bien comprendre un profil thermique isotherme. Si un mouvement local amène une parcelle de gaz à un niveau plus élevé de façon assez rapide pour qu'aucun échange thermique n'ait lieu (par conduction ou rayonnement), celle-ci va se refroidir en suivant le gradient adiabatique, et sera donc plus froide et plus dense que ses environs immédiats. Cette parcelle aura donc tendance à retomber jusqu'à son niveau de départ, puisqu'un gaz plus froid est également plus dense toutes choses égales par ailleurs : par exemple, pour un gaz parfait, . On est donc en présence d'une atmosphère stable.
À l'inverse, si le profil thermique décroît plus fortement avec l'altitude que ce qu'indique le gradient adiabatique, cette parcelle de gaz sera certes refroidie si elle est soumise à un déplacement ascendant adiabatique, mais elle se retrouvera tout de même légèrement plus chaude que l'atmosphère environnante, et donc moins dense. Elle pourra donc continuer son mouvement ascendant jusqu'à ce qu'elle rencontre une zone stable où le profil thermique décroît moins vite que le gradient adiabatique. Une telle zone où des mouvements de convection à grande échelle peuvent se développer à partir d'une petite perturbation est dite instable. L'effet à long terme de ces mouvements de convection va conduire à un mélange qui homogénéisera le profil vertical de température jusqu'à retrouver une situation marginalement stable, c'est-à-dire avec un profil thermique suivant exactement le gradient adiabatique.
Les profils thermiques purement radiatifs tels que ceux modélisés ici ont tendance à voir leur pente croître en valeur absolue à mesure que la profondeur optique infrarouge croît en s'enfonçant dans l'atmosphère profonde. Sous couvert d'hypothèses raisonnables concernant la composition du gaz considéré parfait (pour ) et la croissance de selon le niveau de pression dans l'atmosphère, il est possible (mais hors-programme) de montrer que la pente du profil radiatif excède, en valeur absolue, le gradient adiabatique pour voisin de l'unité. Les régions atmosphériques situées en dessous () deviennent donc instables vis-à-vis de la convection qui s'y développe, et le profil thermique se met alors à suivre non plus la valeur donnée par le seul équilibre radiatif, mais le gradient adiabatique. On appelle cette couche atmosphérique troposphère. Les couches situées au-dessus () sont quant à elles stables vis-à-vis de la convection, et l'équilibre radiatif y est valable : on se trouve alors dans la stratosphère ou la mésosphère, selon l'existence ou non d'une inversion de température.
Notons qu'il existe quand même une troposphère dans les atmosphères des planètes telluriques trop peu opaques au rayonnement infrarouge thermique pour avoir (par exemple Mars, et dans une moindre mesure la Terre). En ce cas, l'instabilité de départ est causée par la discontinuité de température au niveau de la surface planétaire (voir ici), qui donne naissance à des mouvements de convection s'étendant jusqu'à une altitude équivalente à une échelle de hauteur environ.
Les profils thermiques les plus simples ne comportent qu'une troposphère surmontée d'une mésosphère, et le profil thermique y décroît toujours avec l'altitude. Mais il existe parfois au sein de la zone purement radiative une anomalie, une zone où la température croît avec l'altitude. Une telle zone est appelée stratosphère. Pour qu'une telle couche existe au sein d'une atmosphère, il faut qu'elle absorbe elle-même une partie du flux stellaire (dans le domaine visible, UV ou proche IR) et qu'elle soit relativement mauvaise émettrice en infrarouge thermique afin que l'énergie reçue par absorption du flux stellaire ne soit pas immédiatement perdue par rayonnement infrarouge thermique. Si l'on néglige les processus de diffusion lumineuse (ce qui est une hypothèse souvent vérifiée dans le domaine infrarouge thermique en l'absence de nuages, mais assez inexacte pour la lumière stellaire à plus courte longueur d'onde), le critère quantitatif pour l'existence d'une stratosphère est d'avoir une région verticale d'épaisseur optique en lumière stellaire et en infrarouge thermique tels que .
Dans le système solaire, la Terre possède une stratosphère due à la présence d'ozone, qui est un très bon absorbant de la lumière UV du Soleil. Comme, à l'altitude où cette absorption a lieu, l'atmosphère est froide et sèche, et que l'atmosphère terrestre est pauvre en , il y a peu d'absorption du rayonnement infrarouge, et donc aussi une faible émissivité infrarouge ( et étant les gaz à effet de serre principaux au sein des atmosphères telluriques). Les conditions d'existence d'une stratosphère sont donc réunies. En revanche, les atmosphères de Vénus et de Mars, constituées principalement de qui est un excellent émetteur infrarouge, ne possèdent pas de stratosphère. Dans le système solaire extérieur, on trouve également des stratosphères, dues à la présence de méthane () au sein de ces atmosphères qui absorbe bien dans l'infrarouge proche émis par le Soleil. Dans le cas de Titan, la stratosphère est due non seulement au méthane, mais aussi à l'absorption de la lumière solaire par les particules du brouillard photochimique qui l'entoure à haute altitude.
Au sommet de la mésosphère, vers un niveau de pression de , l'atmosphère devient trop peu dense pour être efficacement absorbante au rayonnement infrarouge et ainsi échanger de l'énergie de façon radiative. Le seul phénomène encore capable de transporter l'énergie devient alors la conduction thermique, obéissant à la loi de Fourier : où désigne la conductivité thermique du milieu et le flux de chaleur ainsi transporté. La structure thermique dans cette couche est alors dictée par la position des sources et des puits de chaleur :
Les positions respectives de ces puits et de ces sources causent un profil thermique croissant avec l'altitude, et pouvant atteindre des températures très élevées la journée car la conductivité thermique d'un tel milieu dilué est très faible, la chaleur peut donc y être piégée de façon très efficace. On nomme donc cette couche thermosphère. Sur Terre, la dissociation des molécules de par les UV solaires est une source de chaleur intense (ces molécules très fragiles vis-à-vis des rayonnements dissociants et/ou ionisants sont nombreuses dans l'atmosphère terrestre), si bien que les températures thermosphériques peuvent atteindre des valeurs très élevées, supérieures à . Pour les planètes géantes du système solaire, la source d'énergie est principalement due au chauffage par effet Joule dans l'ionosphère (friction des électrons libres). En revanche, dans les atmosphères telluriques riches en comme celles de Vénus et Mars, la dissociation des molécules est relativement difficile et le dioxyde de carbone est un radiateur efficace même à faible pression, ce qui entraîne des maxima de température diurne bien plus faible, pouvant même disparaître complètement pendant la nuit. On appelle alors parfois cette couche cryosphère lorsque ce phénomène se produit.
Voici quelques questions sur les définitions des grandeurs employées
Vous venez d'être embauché par un célèbre réalisateur Hollywoodien en tant que conseiller scientifique pour son prochain film de science-fiction. L'action se déroulera sur une lune tellurique nommée Pandore d'une planète géante appelée Polyphème en orbite autour de l'étoile . Toutes les données numériques pertinentes se trouvent ci-dessous.
Étoile (α Centauri) :
Polyphème :
Pandore :
On se propose à présent d'estimer l'opacité infrarouge de l'atmosphère de Pandore à l'aide d'un modèle simple. L'atmosphère est supposée parfaitement transparente en lumière visible et absorbe la totalité des rayonnements infrarouges thermiques. La température de l'atmosphère, supposée uniforme, sera notée .
Afin d'améliorer ce modèle, on ajoute une seconde couche atmosphérique partiellement opaque aux IR thermiques au-dessus de la première couche (qui reste complètement opaque à ces mêmes IR thermiques). On note la température de la couche supérieure et celle de la couche profonde . La couche 1 absorbe une fraction du rayonnement IR thermique. Ces deux couches sont toujours considérées parfaitement transparentes en lumière visible.
Compte tenu de la composition atmosphérique, s'attend-on à trouver une stratosphère sur Pandore ? Si oui, quelle serait l'espèce chimique responsable ?
Calculer le gradient adiabatique sec . Le gradient adiabatique humide sera-t-il inférieur ou supérieur en valeur absolue ?
Représenter l'allure du profil thermique moyen de Pandore. On considérera que la troposphère s'étend sur une échelle de hauteur , et on fera figurer l'échelle de hauteur, les différentes couches atmosphériques et les températures à leurs limites quand cela est possible.
Le but de ce mini-projet est de gagner une compréhension plus intuitive de l'équilibre radiatif au sein d'une atmosphère tellurique, et notamment du phénomène d'effet de serre, au moyen d'un modèle simplifié basé sur des hypothèses simplificatrices vues dans ce cours. Ceci permettra de vérifier par le calcul les résultats obtenus en manipulant ce modèle.
Le modèle est donc plan-parallèle, et traite le spectre électromagnétique en deux domaines distincts : le visible/UV/IR proche (shortwave, SW) et l'infrarouge thermique (longwave, LW ou IR). Ces deux domaines sont traités chacun de façon grise. L'atmosphère est constituée de deux couches considérées isothermes, pouvant absorber et émettre tout ou partie des rayonnements IR thermiques. Le rayonnement SW n'est quant à lui absorbé que par la surface, l'atmosphère étant donc parfaitement transparente. Les échanges autres que radiatifs sont négligés par ce modèle.
Voici la signification des différents champs à remplir :
Calculatrice
Modèle à deux couches
Dans cette partie, on fixe l'opacité de la couche n°2 à proximité de la surface à une valeur très élevée, et on ajuste seulement l'opacité de la couche n°1.
-------------FIN DU CHAPITRE -------------FIN DU CHAPITRE -------------FIN DU CHAPITRE -------------FIN DU CHAPITRE -------------
pages_fluide-temperature-setester-qcm/definitions.html
pages_fluide-temperature-setester-qcm/effetdeserre-exo.html
Revoir la définition de l'effet de serre : l'absorption du rayonnement thermique n'est pas le seul critère !
pages_fluide-temperature-setester-qcm/profils.html
Revoir les définitions.
pages_fluide-temperature/calculs.html
Ce sont des applications directes des définitions.
Chercher parmi les espèces présentes celles qui absorbent les UV, et comparer leurs abondances à celle des espèces qui rayonnent bien dans l'IR thermique.
Les bons absorbants en UV sont l'ozone et le dioxyde de soufre, tandis que le dioxyde de carbone, la vapeur d'eau, le méthane et le monoxyde de carbone sont de bons gaz à effet de serre. L'existence d'une stratosphère est donc possible, même si probablement moins marquée que sur Terre du fait du plus grand effet de serre.
Applications directes des formules du cours.
-6,8 K/km. Le gradient adiabatique humide sera inférieur en valeur absolue.
Températures importantes : au sommet de la troposphère, au sommet de l'atmosphère (voir le modèle à deux couches).