Introduction | Structures planétaires | Observables | Techniques et méthodes | Lieux de vie | Auteurs | Boite à outils |
Effet de serre : modèles plus complexes |
Le modèle vu précédemment a l'inconvénient de ne pas pouvoir excéder une augmentation de température à la surface de . Ceci est insuffisant dans le cas des atmosphères très épaisses comme celle de Vénus, où le rapport excède ! Cela signifie que de telles atmosphères ne peuvent se modéliser par une unique couche isotherme, même totalement absorbante aux rayons infrarouges. Il existe différents modèles plus complexes permettant de mieux rendre compte des effets de serre intenses.
Une première idée est d'ajouter, au-dessus de la première couche atmosphérique complètement opaque au rayonnement thermique de la planète, une ou plusieurs couches (la dernière couche immédiatement avant l'espace pouvant être partiellement transparente). Ces différentes couches atmosphériques peuvent alors chacune adopter des températures différentes, et former ainsi un profil de température décroissant avec l'altitude. Il faut ainsi environ une centaine de couches opaques pour rendre compte de la température de surface de Vénus.
L'étude d'un modèle à deux couches atmosphériques fait l'objet du mini-projet associé à ce chapitre.
Une vision plus réaliste mais ne faisant toujours intervenir que des échanges d'énergie par rayonnement consiste à découper l'atmosphère en un mille-feuille constitué d'une infinité de couches atmosphériques infiniment fines (d'un point de vue radiatif). En restant dans l'approximation grise en infrarouge thermique et transparente en lumière visible, il est même possible (mais hors-programme au niveau licence) de démontrer l'expression du profil de température en fonction de la profondeur optique en infrarouge thermique : . Notons que dans ce modèle, on obtient : le seul équilibre radiatif tend à créer une discontinuité de température au niveau de la surface, ce qui déclencherait alors des processus de convection pour y remédier. Un tel contraste thermique est néanmoins observable à la surface des planètes telluriques éclairées par le Soleil, comme une plage sur Terre par beau temps (le sable peut alors être brûlant et l'air frais), ou mieux encore dans les déserts de Mars.
Néanmoins, dans les atmosphères épaisses ou pour expliquer l'existence des stratosphères, l'absorption de la lumière stellaire par l'atmosphère doit être prise en compte (par exemple, seuls quelques pourcents de la lumière solaire atteint directement la surface de Vénus). Des expressions analytiques deviennent alors délicates à trouver, mais des modèles numériques peuvent être utilisés pour déterminer les profils de température dans une colonne d'atmosphère (ce que l'on appelle un modèle 1D radiatif). On peut également profiter de la puissance de calcul des ordinateurs pour abandonner d'autres approximations : il est par exemple indispensable d'abandonner l'approximation grise en infrarouge thermique si l'on veut simuler le spectre du rayonnement thermique émis par la planète.