Introduction | Structures planétaires | Observables | Techniques et méthodes | Lieux de vie | Auteurs | Boite à outils |
Autres couches atmosphériques |
Les profils thermiques les plus simples ne comportent qu'une troposphère surmontée d'une mésosphère, et le profil thermique y décroît toujours avec l'altitude. Mais il existe parfois au sein de la zone purement radiative une anomalie, une zone où la température croît avec l'altitude. Une telle zone est appelée stratosphère. Pour qu'une telle couche existe au sein d'une atmosphère, il faut qu'elle absorbe elle-même une partie du flux stellaire (dans le domaine visible, UV ou proche IR) et qu'elle soit relativement mauvaise émettrice en infrarouge thermique afin que l'énergie reçue par absorption du flux stellaire ne soit pas immédiatement perdue par rayonnement infrarouge thermique. Si l'on néglige les processus de diffusion lumineuse (ce qui est une hypothèse souvent vérifiée dans le domaine infrarouge thermique en l'absence de nuages, mais assez inexacte pour la lumière stellaire à plus courte longueur d'onde), le critère quantitatif pour l'existence d'une stratosphère est d'avoir une région verticale d'épaisseur optique en lumière stellaire et en infrarouge thermique tels que .
Dans le système solaire, la Terre possède une stratosphère due à la présence d'ozone, qui est un très bon absorbant de la lumière UV du Soleil. Comme, à l'altitude où cette absorption a lieu, l'atmosphère est froide et sèche, et que l'atmosphère terrestre est pauvre en , il y a peu d'absorption du rayonnement infrarouge, et donc aussi une faible émissivité infrarouge ( et étant les gaz à effet de serre principaux au sein des atmosphères telluriques). Les conditions d'existence d'une stratosphère sont donc réunies. En revanche, les atmosphères de Vénus et de Mars, constituées principalement de qui est un excellent émetteur infrarouge, ne possèdent pas de stratosphère. Dans le système solaire extérieur, on trouve également des stratosphères, dues à la présence de méthane () au sein de ces atmosphères qui absorbe bien dans l'infrarouge proche émis par le Soleil. Dans le cas de Titan, la stratosphère est due non seulement au méthane, mais aussi à l'absorption de la lumière solaire par les particules du brouillard photochimique qui l'entoure à haute altitude.
Au sommet de la mésosphère, vers un niveau de pression de , l'atmosphère devient trop peu dense pour être efficacement absorbante au rayonnement infrarouge et ainsi échanger de l'énergie de façon radiative. Le seul phénomène encore capable de transporter l'énergie devient alors la conduction thermique, obéissant à la loi de Fourier : où désigne la conductivité thermique du milieu et le flux de chaleur ainsi transporté. La structure thermique dans cette couche est alors dictée par la position des sources et des puits de chaleur :
Les positions respectives de ces puits et de ces sources causent un profil thermique croissant avec l'altitude, et pouvant atteindre des températures très élevées la journée car la conductivité thermique d'un tel milieu dilué est très faible, la chaleur peut donc y être piégée de façon très efficace. On nomme donc cette couche thermosphère. Sur Terre, la dissociation des molécules de par les UV solaires est une source de chaleur intense (ces molécules très fragiles vis-à-vis des rayonnements dissociants et/ou ionisants sont nombreuses dans l'atmosphère terrestre), si bien que les températures thermosphériques peuvent atteindre des valeurs très élevées, supérieures à . Pour les planètes géantes du système solaire, la source d'énergie est principalement due au chauffage par effet Joule dans l'ionosphère (friction des électrons libres). En revanche, dans les atmosphères telluriques riches en comme celles de Vénus et Mars, la dissociation des molécules est relativement difficile et le dioxyde de carbone est un radiateur efficace même à faible pression, ce qui entraîne des maxima de température diurne bien plus faible, pouvant même disparaître complètement pendant la nuit. On appelle alors parfois cette couche cryosphère lorsque ce phénomène se produit.