Introduction | Structures planétaires | Observables | Techniques et méthodes | Lieux de vie | Auteurs | Boite à outils |
Imagerie différentielle |
L'idée de base de l'imagerie différentielle est de prendre plusieurs images de l'étoile et de sa planète (ou ses planètes) et de profiter des différences entre les images de ces objets pour les identifier et les distinguer. Après l'acquisition des données brutes par l'instrument, il faut commencer par les corriger des biais instrumentaux, de la réponse des pixels du capteur CCD, on obtient alors les images dites scientifiques. Il faut ensuite corriger les effets de l'instrument (on appelle cela déconvoluer l'image de l'étoile (selon la PSF, ou Point Spread Function de l'instrument, c'est-à-dire l'étalement d'un point source sur le détecteur). Pour ce faire, plusieurs méthodes sont possibles suivant l'instrument.
L'imagerie différentielle angulaire (ADI en anglais), va exploiter la rotation des objets sur la voûte céleste, comme vous pouvez le voir sur cette [ animation ]. Les étoiles présentent un déplacement apparent dans le ciel au cours de la nuit suivant des arcs de cercle centrés sur le pôle céleste. En général, un télescope moderne compense cette rotation automatiquement, mais ici nous bloquons cette rotation et suivons seulement le déplacement apparent de l'étoile sans rotation de l'instrument. Cela a pour effet d'appliquer une rotation de l'image de la planète (à ne pas confondre avec la révolution de la planète autour de son étoile) dans le ciel autour de l'axe de rotation de la Terre. Il "suffit" alors de faire la médiane des différentes images pour annuler les signaux non fixes (comme les éventuelles planètes), ce qui revient à ne garder que la PSF de l'étoile (ponctuelle) comme image médiane. Ensuite on soustrait cette PSF de toutes les images scientifiques, puis on applique une rotation de sens opposée à celle observée sur les images de façon à corriger la rotation sur le ciel, et finalement on additionne les images pour faire ressortir les planètes (si il y en a).
La lumière émise par les étoiles n'est pas polarisée, mais quand celle-ci est diffusée ou réfléchie par des disques ou des planètes elle peut acquérir une polarisation LIEN VERS GRAIN POLARISATION. Forts de ce constat, nous pouvons prendre deux images acquises avec deux polariseurs dans des directions perpendiculaires. L'étoile apparaît inchangée, tandis que les sources secondaire par réflexion ou diffusions présenteront des différences. On peut dont soustraire l'une des images à l'autre pour ne garder que les disques et les planètes proches.
Les planètes et les étoiles émettent des spectres caractéristiques, comportant des raies spectrales diverses selon la physico-chimie de ces objets (température, gravité, composition). Dans certaines bandes de longueurs d'onde, seul l'un des deux types de corps possède des absorbants : c'est par exemple le cas du méthane pour les planètes (du moins celles assez froides pour que des molécules puissent exister dans leurs atmosphères). Les tavelures, quant à elles, apparaissent à une distance angulaire proportionnelle à la longueur d'onde. L'imagerie différentielle spectrale (SDI en anglais) part du principe que l'on acquiert plusieurs images, simultanément, dans plusieurs bandes de longueurs d'onde judicieusement choisies. On ajuste ensuite leur échelle relative afin de pouvoir identifier et de retirer les tavelures. Ceci nous permet d'exploiter les différences entre étoiles et planètes pour extraire des informations sur ces dernières.