Introduction | Structures planétaires | Observables | Techniques et méthodes | Lieux de vie | Auteurs | Boite à outils |
Interferometrie |
Une manière différente d'aborder le problème est de passer par l'interférométrie, et en particulier l'interférométrie annulante. L'idée de base va être d'utiliser au moins deux télescopes assez éloignés pour augmenter la résolution angulaire (et donc bien distinguer l'étoile de l'éventuelle planète), et d'essayer de diminuer l'intensité en provenance de l'étoile (mais pas de la planète !) au moyen d'interférences destructives.
Au lieu d'avoir comme facteur limitant, en résolution angulaire, le diamètre de l'instrument, l'interférométrie permet de passer d'une résolution proportionnelle à à un résolution proportionnelle à où est la ligne de base d'interférométrie (dans le cas de deux télescopes, il s'agit de la distance entre ces deux télescopes). Ces télescopes éloignés sont reliés entre eux par un chemin optique conçu de telle sorte que les interférences produites par la lumière arrivant dans l'axe des télescopes (la lumière de l'étoile) conduisent à une annulation des deux ondes en provenance des deux télescopes. On obtient donc sur le récepteur une figure de franges d'interférences centrées sur l'étoile au coeur d'une frange sombre. Mais la planète, elle, est située hors-axe : elle apparaît donc légèrement décalée et, si la figure d'interférences est correctement mis en place, échappe non seulement aux interférences destructives mais profite même d'interférences constructives pour augmenter le signal.
Nous avons parlé précédemment de la coronographie qui est utilisée sur des grands télescopes, notamment ceux de 8 m de diamètre du VLT. Ces instruments travaillent dans le proche infrarouge et le visible mais ne peuvent pas atteindre de plus grandes longueurs d'onde comme l'infrarouge moyen qui serait pourtant très intéressant pour étudier les raies spectrales des molécules, ou pour étudier des planètes plus froides émettant leur spectre thermique à de plus grandes longueurs d'onde. Le problème vient du fait qu'un télescope de 8 m de diamètre ne peut pas facilement séparer les sources à grandes longueurs d'onde, le pouvoir de résolution d'un télescope étant proportionnel à . Il faut donc augmenter la taille du télescope, ou combiner le flux de plusieurs télescopes comme nous le présentons ici. On peut alors aisément obtenir une ligne de base de 100 m en séparant 2 télescopes de cette distance.