Introduction | Structures planétaires | Observables | Techniques et méthodes | Lieux de vie | Auteurs | Boite à outils |
Équations de la dynamique |
Le mouvement d'une particule dans un fluide est décrit par la deuxième loi de Newton (conservation de la quantité de mouvement) qui lorsqu'elle est appliquée à la mécanique des fluides donne l'équation de Navier-Stokes. Dans un système en rotation l'équation du mouvement d'une parcelle de fluide est:
avec est la dérivée particulaire qui s'écrit , la vitesse du fluide, la somme des forces s'appliquant sur la parcelle et la densité du fluide.
Soit en détaillant les forces :
avec l'accélération de la force de Coriolis, les forces dues au gradient de pression, l'accélération du géopotentiel, et qui désigne l'accélération dues à la viscosité. Ce qui donne :
(1)
où est le vecteur de rotation de la planète est le gradient de pression.
Comment s'exprime l'accélération de la force de Coriolis dans le repère local ?
On a . Or il a été vu en exercice les expressions des dérivées temporelles des vecteurs , et . Ceci nous permet d'établir les équations de Navier-Stokes dans le référentiel local, en notant que et :
Ce système d'équations décrit tous les types de mouvements atmosphériques à toutes les échelles. Ces équations sont compliquées à résoudre, mais dans bien des cas utiliser une approximation est suffisante pour modéliser de nombreux phénomènes atmosphériques dynamiques.
Déduire les équations de Navier-Stokes en coordonnées sphériques données ci-dessus à partir de l'équation fondamentale de la dynamique (Equation 1).