Introduction | Structures planétaires | Observables | Techniques et méthodes | Lieux de vie | Auteurs | Boite à outils |
Les équations primitives |
Les équations de la dynamique sont très compliquées car elles forment un système non linéaire. Ceci signifie que la somme de deux solutions n'est pas forcément solution du problème, ce qui rend la résolution de ces équations très ardue, et à ce jour encore source de recherches. Cependant, en fonction des phénomènes étudiés et des caractéristiques de l'atmosphère planétaire, certains termes de ces équations peuvent en dominer d'autres. Pour estimer les différents termes dans les équations, on utilise la méthode de l'analyse d'échelle. Les ordres de grandeur des différents termes en jeu dans les équations fondamentales de la dynamique seront très différents selon l'échelle des écoulements que l'on souhaite étudier. Dans le tableau ci-dessous on compare les termes dominants sur les planètes à rotation rapide (la Terre) avec ceux sur les planètes à rotation lente (Vénus):
Terre | 10-5 | 10-5 | 10-8 | 10-3 | 10-6 | 10-12 |
Vénus | 10-3 | 10-5 | 10-5 | 10-5 | 10-7 | 10-12 |
avec le rayon de la planète. On a , où est l'altitude depuis la surface.
On peut alors appliquer les approximations suivantes:
On obtient alors les équations primitives de la météorologie :
À ce système d'équations on ajoute l'équation des gaz parfaits:
Avec la constante universelle des gaz parfaits et la masse molaire du gaz qui constitue l'atmosphère, et dépend donc de sa composition. Pour l'air terrestre, on a
ainsi que l'équation de conservation de la masse:
Enfin, le premier principe de la thermodynamique:
Avec le forçage diabatique et la température potentielle : , où , la chaleur spécifique à pression constante et une pression de référence.
On obtient ainsi 6 équations avec 6 inconnues ().
Ce système d'équations primitives est le plus complet utilisé pour l'étude de la circulation générale de l'atmosphère. C'est notamment celui utilisé par les modèles de circulation générale.