mise à jour : 1 février 2022
mise à jour : 1 février 2022
IntroductionStructures planétairesObservablesTechniques et méthodesLieux de vieAuteursBoite à outils
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Techniques et méthodes

Spectrographe

Principe du spectrographe d'échelle
Echelle_Principle.png
Le rayon incident est d'abord diffracté sur une grille standard (std. grating), puis à nouveau diffracté par le réseau d'échelle. Les trois spectres finalement obtenus sont reçus par des capteurs CCD.
Crédit : "Echelle Principle" by Boris Považay (Cardiff University) - Own work. Licensed under CC BY-SA 2.5 via Wikimedia Commons

L'observation des vitesses radiales nécessite de mesurer des longueurs d'onde très précisément, pour cela on utilise des spectrographe. Les équipes américaines et européennes utilisent des appareils différents, mais dans les deux cas ce sont des spectrographes d'échelle. Le principe d'un tel instrument est d'observer simultanément plusieurs ordres élevés de diffraction à l'aide de deux diffractions successives. La lumière est d'abord diffractée par un premier réseau. Un dispositif, appelé "echelle grating" est placé à un certain angle (blazing angle) du premier réseau de sorte à recevoir des ordres élevés de la première diffraction, qui sont diffractés à nouveau.

Ce dispositif permet "d'étaler" le spectre de sorte qu'une rangée de détecteurs CCD reçoit des longueurs d'ondes très proches, ce qui permet une haute résolution spectrale. En contrepartie, l'énergie est elle aussi répartie, ce qui augmente le temps d'intégration nécessaire pour recevoir suffisamment de lumière pour obtenir un certain rapport signal sur bruit.

D'une mesure à l'autre, à cause de variations internes à l'instrument (température, pression), une longueur d'onde donnée peut se décaler. Comme les mesures doivent pouvoir être comparées entre elles; ce problème doit être résolu efficacement: il faut étalonner l'instrument. Sur ce point, les instruments européens et américains diffèrent. Pour les premiers: ELODIE, CORALIE, HARPS, HARPS-N, l'étalonnage se fait en observant simultanément l'étoile cible est une source dont le spectre est connu. ELODIE observe le ciel, HARPS une lampe thorium-argon calibrée et HARPS-N utilise deux calibrations: un spectre de Fabry-Perot et un "laser frequency comb" (un laser dont le spectre est constitué de raies régulièrement espacées). Les instruments américains font passer la lumière par une cavité contenant de l'iode, dont la position des raies d'absorption est connue. Dans les deux cas on peut comparer Les raies du spectre de référence et celles de l'étoile observée. Si leur déplacement est corrélé (elles se décalent simultanément), il est dû à l'instrument.

La résolution spectrale de ces spectrographes, c'est à dire le rapport R=\frac{\lambda}{\delta \lambda} d'une longeur d'onde \lambda et de la sa variation détectable par le dispositi f \delta \lambda est de l'ordre de 100000. Des simulations numériques (Hatzes & Cochran 1992) ont montré que l'écart type sur la mesure finale de vitesse radiale \sigma_{rv} vérifie:

\sigma_{rv} = k I^{-\frac{1}{2}} {\Lambda}^{-\frac{1}{2}} R^{-1}

I est l'intensité reçue, \Lambda est la plage de fréquences considérées et k est une constante de proportionnalité. Comme certaines longueurs d'ondes jugées contaminées peuvent être exclues de certaines mesures, cette valeur varie d'une mesure à l'autre.

Page précédentePage suivante