Introduction | Structures planétaires | Observables | Techniques et méthodes | Lieux de vie | Auteurs | Boite à outils |
Orbite : Période et excentricité |
La grande puissance de la méthode des transits résulte de la reproductibilité du phénomène. Un système transitant peut être observé autant de fois que l’on souhaite, avec à chaque fois les mêmes caractéristiques en termes de timing et de profondeur de transit, ce qui permet l’accumulation de la précision sur ces deux paramètres. La précision sur la mesure des instants de transits est riche d’enseignements.
Dans le cas d’une orbite circulaire de période P, un transit et l'éclipse secondaire adjacente sont séparés temporellement de P/2. Ce n’est plus le cas pour une orbite elliptique, et la mesure de ces séparations temporelles (transit-éclipse et éclipse-transit) donne une information sur l’excentricité de l’orbite; plus précisément, elle contraint le produit e cos (ω), où e est l’excentricité et ω l’argument du périastre. La mesure des durées relatives du transit et de l'éclipse secondaire fournissent aussi des contraintes sur ces paramètres, mais avec moins de précision, eu égard à la courte durée des transits par rapport à leur périodicité.
Au-delà même de la caractérisation statistique des orbites planétaires, l’intérêt physique de ces mesures d’excentricité est grand. Ainsi, pour les planètes proches de leur étoile, les effets de marée associés aux orbites elliptiques produisent un chauffage interne qu’il est possible d’estimer, fournissant des contraintes sur la structure thermique des objets.
Par ailleurs, s’agissant de la connaissance de la période orbitale et des instants de transit et d’éclipse, la méthode des transits est presque toujours plus précise que la méthode des vitesses radiales. Pour autant, ces paramètres interviennent dans l’interprétation des courbes de vitesse radiale (ce sont 3 des 6 paramètres libres associés à cette méthode), donc leur connaissance indépendante via les transits a un grand intérêt pour l’amélioration de la précision sur les autres.