mise à jour : 1 février 2022
mise à jour : 1 février 2022
IntroductionStructures planétairesObservablesTechniques et méthodesLieux de vieAuteursBoite à outils
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Techniques et méthodes

Orbite : Orientation

transit-fig2.png

Une exoplanète qui transite devant son étoile possède une orientation favorable pour la spectroscopie des vitesses radiales : L'étoile et la planète tournent autour de leur centre de gravité. Au moment du transit planétaire, l'étoile est à son point le plus éloigné de la Terre (i.e. l'observateur) et sa vitesse Doppler s'annule.

S’y rajoute un effet subtil : en raison de sa rotation propre, le rayonnement d’une partie de l’étoile est décalé vers le bleu, l’autre vers le rouge (Fig. 2). Si la planète a une orbite prograde (dans le même sens que la rotation stellaire), elle masque d’abord des régions de l’étoile émettant un rayonnement décalé vers le bleu (zones grisées sur la Fig. 2), puis vers le rouge (zones claires). En conséquence, par rapport à sa valeur mesurée au centre du transit, la vitesse radiale globale de l’étoile est d’abord décalée vers le rouge, puis vers le bleu. C’est ce que l’on appelle l’effet Rossiter- McLaughlin. L’effet est loin d’être faible: en raison des fortes vitesses de rotation stellaires (typiquement 2 km/s pour le Soleil), il peut se chiffrer en quelques dizaines de mètre par seconde – soit souvent plus que la vitesse Doppler de l’étoile liée à la planète.

L’évolution du décalage Doppler de l’étoile pendant le transit permet alors non seulement de confirmer l’existence du transit, mais aussi de déterminer l’orientation de l’orbite planétaire, à savoir l’angle entre le plan orbital et l’axe de rotation de l’étoile (angle appelé obliquité de l’étoile).

Cette méthode a mis en évidence de nombreux cas de tels désalignements spin-orbite, voire d’orbites planétaires rétrogrades. L’origine de ces désalignements reste mal comprise, mais est sans doute liée à des phénomènes d’interaction, magnétique entre la jeune étoile et le disque proto-stellaire, ou gravitationnelle avec des compagnons stellaires au moment de la formation, qui auraient pu faire « basculer » l’axe de rotation stellaire. Une autre hypothèse serait que l’axe de rotation de l’étoile représente bien la direction perpendiculaire au plan du disque primordial, et que c’est le système planétaire dont le plan orbital a changé depuis sa formation.

Page précédentePage suivante