Ondes atmosphériques

Auteurs: Thomas Navarro, Arianna Piccialli

Caractéristiques des ondes

Les ondes atmosphériques sont des perturbations des champs atmosphériques qui se propagent dans l'espace et/ou le temps. C'est un mécanisme important dans la dynamique des atmosphères car les ondes permettent de transporter des perturbations, transporter de l'énergie et de la quantité de mouvement d'une région à une autre.

rappelPropriétés des ondes

On peut représenter de manière simplifiée une onde atmosphérique par une fonction sinusoïdale, en fonction d'une dimension spatiale de coordonnée x et d'une dimension temporelle de coordonnée t:

\psi(x,t)=\psi_a\cos(k x-\omega t + \phi)

\psi_a est l'amplitude de l'onde; k=\frac{2\pi}{\lambda} est le nombre d'onde; \lambda est la longueur d'onde (en mètres); \omega=\frac{2\pi}{T} est la pulsation; T est la période (en secondes). \phi est la phase de l'onde, c'est-à-dire la valeur de la perturbation lorsque x=0 et t=0. La longueur d'onde est définie comme étant la distance séparant deux crêtes consécutives d'une onde. Si c (en mètres par seconde) est la vitesse de propagation de l'onde, on définit la fréquence (en hertz) par : \nu=\frac{c}{\lambda}.

Le champ physique représenté par \psi(x,t) est une variable atmosphérique. Il peut s'agir de la température, pression, le vent, etc ... La dimension de l'amplitude \psi_a est donc la même que celle de la variable représentée par la perturbation \psi.

Caractéristique d'une onde
Example_Wave.png
Au bout d'une durée correspondant à une période T, l'onde aura aura la même allure.
Crédit : A. Piccialli

rappelNotation exponentielle

Une manière plus compacte et efficace pour représenter une onde est la notation exponentielle. On écrit la perturbation sous sa forme complexe de la manière suivante :

\Psi(x,t)=\Psi_ae^{i(kx-\omega t)}

Avec i le nombre imaginaire i^2=-1. La perturbation réelle est définie comme étant la partie réelle de sa forme complexe :

\psi=Re(\Psi)

En utilisant la relation trigonométrique bien connue e^{i\theta}=\cos\theta +i\sin\theta, on obtient que l'amplitude complexe \Psi_a vaut :

\Psi_a=\psi_a e^{i\phi}

L'amplitude complexe \Psi_a contient ainsi l'information à la fois sur l'amplitude \psi_a et la phase \phi de l'onde. Cette notation est très pratique car elle permet notamment de dériver ou d'intégrer une onde par rapport à l'espace ou au temps. Par exemple :

\frac{\partial\psi}{\partial x} = \frac{\partial Re(\Psi)}{\partial x} = Re\left(\frac{\partial \Psi}{\partial x}\right) = Re(ik\Psi)

Ainsi, dériver par rapport à la coordonnée spatiale x revient à multiplier l'onde complexe par ik. De même, une dérivation temporelle revient à multiplier par -i\omega.

De la même manière, on peut montrer que trouver une primitive de l'onde complexe revient à diviser par ik, donc à multiplier par -\frac{i}{k}. De même, multiplier par \frac{i}{\omega} permet de trouver une primitive par rapport à t.


Onde sonore

Méthode des perturbations

À partir des équations primitives, il est possible de trouver les ondes susceptibles de se propager dans l'atmopshère en utilisant la méthode des perturbations. Il s'agit d'écrire chaque champ (par exemple avec la pression p) comme étant la somme d'une valeur fixe p_0 solution des équations et d'une petite perturbation p': p=p_0+p'. Ceci permet de linéariser les équations primitives en obtenant une équation pour les petites pertubations. Ces pertubations correspondent à des ondes que l'on peut ainsi étudier au moyen d'un cadre formel.

Onde sonore

L'onde la plus évidente est l'onde sonore dont le calcul va être détaillé ci-dessous. On définit les petites perturbations comme étant des ondes se propageant horizontalement et verticalement :

\Psi = \Psi_a e^{i(kx+mz-\omega t)}

avec k et m les nombres d'ondes horizontaux et verticaux respectivement. On fait l'approximation que la rotation et la gravité sont négligeables dans le cas qui nous intéresse. De plus, on suppose un fluide au repos, où la dérivée lagrangienne est égale à la dérivée eulérienne. Ainsi dans les équations primitives la force de Coriolis s'annule, tout comme la force centrifuge. En posant p'=c_s^2\rho' avec c_s la vitesse du son, les équations du mouvement horizontal et de l'équation de continuité s'écrivent ainsi :

\rho_0\frac{\partial u'}{\partial t} = - \frac{\partial p'}{\partial x}

\rho_0\frac{\partial v'}{\partial t} = - \frac{\partial p'}{\partial y}

\rho_0\frac{\partial w'}{\partial t} = - \frac{\partial p'}{\partial z}

\frac{1}{c_s^2}\frac{\partial p'}{\partial t} = - \rho_0\left( \frac{\partial u'}{\partial x} + \frac{\partial v'}{\partial y} +\frac{\partial w'}{\partial z} \right)

Soit, en utilisant les propriétés de la notation exponentielle :

-i\omega \rho_0 U_a = -ikP_a

-i\omega \rho_0 V_a = 0

-i\omega \rho_0 W_a = -imP_a

-i\omega P_a= c_s^2\rho_0(ikU_a+imW_a)

Par identification, on obtient :

\omega^2=c_s^2(k^2+m^2)

qui nous donne la relation entre longueur d'onde et période d'une onde sonore.

Généralisation

Le traitement des ondes atmosphériques est un sujet complexe; dans la page qui suit, nous allons donner un aperçu général des principaux types d'ondes en comparant différentes planètes, mais sans entrer dans le détail.

Une analyse plus détaillée des phénomènes ondulatoires peut être trouvé dans la liste suivante des livres:


Exemples d'ondes atmosphériques

Les ondes atmosphériques peuvent se manifester de diverses manières: comme oscillations de la température, de la densité et de la vitesse du vent, ou à travers des structures régulières de nuages. Ils peuvent être classés sur la base de facteurs différents: (1) mécanismes de restauration; (2) échelles de temps et d'espace; (3) ondes stationnaires ou qui se déplacent.

demonstrationClassement des ondes

Figure 1
GW_V1.png
Crédit : A. Piccialli
Figure 2
Kelvin.jpg
Ondes de Kelvin-Helmholtz observés au-dessus de Rome.
Crédit : Angelo Zinzi