mise à jour : 1 février 2022
mise à jour : 1 février 2022
IntroductionStructures planétairesObservablesTechniques et méthodesLieux de vieAuteursBoite à outils
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Structures planétaires

definitionNombre de Richardson

Auteurs: Thomas Navarro, Arianna Piccialli

definitionDéfinition

Pour caractériser les différents types des instabilités atmosphériques on utilise le nombre de Richardson, un nombre sans dimension défini par:

Ri=\frac{N^2}{S^2}

S=\left(\frac{\partial{u}}{\partial{z}}\right) est le cisaillement vertical du vent.

N est nommée fréquence de Brunt-Väisälä définie comme la différence entre le gradient vertical de température \left(\frac{dT}{dz}\right) et le gradient adiabatique \Gamma:

N^2=\frac{g}{T}\left[\left(\frac{dT}{dz}\right)-\Gamma\right]

N est la fréquence d'oscillation d'une particule soumise à un déplacement vertical. Pour N^2<0 l'atmosphère est instable et une particule déplacée de son état initial s'éloignera irréversiblement. Si N^2=0, la stabilité est "neutre", la particule déplacée demeura à sa nouvelle altitude. Enfin, pour N^2>0 se produit une oscillation de la particule autour de son état initial.

conclusionInterprétation

  • Ri<0 : Instabilité verticale

    Dans ce cas, correspondant à un valeur négative de la fréquence de Brunt-Väisälä N^2<0, la couche atmosphérique est instable et la turbulence est soutenue par la convection.

  • 0<Ri<0.25 : Instabilité de Kelvin-Helmholtz

    Parfois on observe de la turbulence dans des couches atmosphèriques thermiquement stables. Cette turbulence, dite de Kelvin-Helmholtz, est crée dans des régions où il y a du cisaillement du vent. Un valeur positive de nombre de Richardson au-dessous d'une valeur critique Ri=0.25 est une condition nécessaire afin que l'instabilité de Kelvin-Helmholtz se puisse produire. L'écoulement de Kelvin-Helmholtz est le résultat du cisaillement de vitesse entre deux fluides glissant l'un par rapport à l'autre.

  • Ri\gg 1 : Atmosphère stable

    Condition suffisante pour une écoulement stable.

Page précédentePage suivante