Quaternions

Auteur: Gary Quinsac

Représentation 3D

Afin de s'affranchir du problème de singularité rencontré avec les angles d'Euler, une représentation de l'attitude composée de 4 éléments est introduite sous le nom de quaternion (dont les éléments sont appelés paramètres d'Euler). Cette construction mathématique est présentée plus en détail dans la partie suivante.

Présentation des quaternions

Considérons l'axe fixe de la rotation présentée dans le théorème d'Euler, ou vecteur propre \bold e. C'est un vecteur unité possédant les mêmes composantes dans les référentiels de départ et d'arrivée : \bold e_r = \bold e_b. Ainsi, 4 grandeurs sont requises pour décrire de façon non-ambigüe l'orientation par rapport à un référenciel : les 3 composantes de \bold e et l'angle de la rotation, \theta.

Les quaternions sont une combinaison de ces éléments disposés dans un vecteur de 4 éléments \bold q. Le quaternion contient la même information qu'une MCD à 9 éléments, tout en s'affranchissant des problèmes de singularité rencontrés avec les angles d'Euler. Ils sont à la fois compacts et une représentation efficace de l'orientation pour la détermination d'attitude. Une même rotation est représentée par les quaternions \bold q et - \bold q. On note également que les quatre paramètres d'Euler ne sont pas indépendants, mais contraints par la relation suivante :

\bold q^T \bold q = q_0^2 + q_1^2 + q_2^2 + q_3^2

Pour le vecteur propre \bold e_R = \bold e_B = \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix}, les paramètres d'Euler sont : \bold q = \begin{pmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{pmatrix}, avec q_0 = cos({\theta \over 2}), q_1 = e_1 sin({\theta \over 2}), q_2 = e_2 sin({\theta \over 2}) et q_3 = e_3 sin({\theta \over 2}).

Des quaternions à la MCD

De la même façon que l'on peut exprimer la MCD en fonction des angles d'Euler, elle peut être paramétrée en fonction d'un quaternion de la manière suivante :

[T]_{B|R} = [T(\bold q)] = \begin{pmatrix} 1-2(q_2^2+q_3^2) & 2(q_1q_2+q_3q_0) & 2(q_1 q_3 - q_2 q_0) \\ 2(q_2q_1-q_3q_0) & 1-2(q_1^2+q_3^2) & 2(q_2q_3+q_1q_0) \\ 2(q_3q_1+q_2q_0) & 2(q_3q_2-q_1q_0) & 1-2(q_1^2+q_2^2) \end{pmatrix}

Propriétés des quaternions

Avantage des quaternions

Un avantage inhérent à cette représentation est que les équations de la cinématique deviennent purement algébriques et ne contiennent plus de fonctions trigonométriques.


Présentation mathématique

Les quaternions sont un système de nombres premièrement décrits par William Rowan Hamilton en 1843 appliqué à la mécanique et à l'espace à 3 dimensions.

complementWilliam Rowan Hamilton

Sir William Rowan Hamilton (04/08/1805 - 02/09/1865) est un mathématicien, physicien et astronome irlandais (né et mort à Dublin). Outre sa découverte des quaternions, il contribua également au développement de l'optique, de la dynamique et de l'algèbre. Ses recherches se révélèrent importantes pour le développement de la mécanique quantique.

William Rowan Hamilton
images/Hamilton_painting.jpg
Peinture de Sir William Rowan Hamilton.
Crédit : Domaine public

Définition mathématique

Autre représentation

Une autre façon de présenter un quaternion consiste à dire que q_0 est la partie scalaire de vecteur(q) et q_1 i + q_2 j + q_3 k est la partie vectorielle. Ainsi, la partie scalaire est toujours réelle et la partie vectorielle toujours purement imaginaire. Bien que l'on ait dit qu'un quaternion est un vecteur dans un espace à 4 dimensions, il est courant de définir un vecteur pour la partie imaginaire d'un quaternion : \bold q_{1:3} = q_1 i + q_2 j + q_3 k et \bold q = q_0+\bold q_{1:3}