Afin de s'affranchir du problème de singularité rencontré avec les angles d'Euler, une représentation de l'attitude composée de 4 éléments est introduite sous le nom de quaternion (dont les éléments sont appelés paramètres d'Euler). Cette construction mathématique est présentée plus en détail dans la partie suivante.
Considérons l'axe fixe de la rotation présentée dans le théorème d'Euler, ou vecteur propre . C'est un vecteur unité possédant les mêmes composantes dans les référentiels de départ et d'arrivée : . Ainsi, 4 grandeurs sont requises pour décrire de façon non-ambigüe l'orientation par rapport à un référenciel : les 3 composantes de et l'angle de la rotation, .
Les quaternions sont une combinaison de ces éléments disposés dans un vecteur de 4 éléments . Le quaternion contient la même information qu'une MCD à 9 éléments, tout en s'affranchissant des problèmes de singularité rencontrés avec les angles d'Euler. Ils sont à la fois compacts et une représentation efficace de l'orientation pour la détermination d'attitude. Une même rotation est représentée par les quaternions et . On note également que les quatre paramètres d'Euler ne sont pas indépendants, mais contraints par la relation suivante :
Pour le vecteur propre , les paramètres d'Euler sont : , avec , , et .
De la même façon que l'on peut exprimer la MCD en fonction des angles d'Euler, elle peut être paramétrée en fonction d'un quaternion de la manière suivante :
Il s'agit maintenant d'expliquer comment un quaternion vivant dans peut opérer sur un vecteur vivant lui dans . Notons tout d'abord qu'un vecteur est un quaternion pur dont la partie réelle est nulle. L'opérateur décrivant une rotation s'exprime avec le quaternion unitaire : . Le vecteur ainsi obtenu conserve la longueur du vecteur initial, comme le fait une rotation. Cet opérateur se développe de la manière suivante :
Afin de comprendre cette expression il est nécessaire d'avoir compris la partie suivante qui s'intéresse à l'algèbre des quaternions.
Les séquences de rotation peuvent facilement être décrites par une multiplication des quaternions représentant les rotations successives. Soient les quaternions et décrivant respectivement les opérateurs et . Le premier opérateur est appliqué au vecteur pour obtenir le vecteur , puis le second est appliqué à pour obtenir . La composition des opérateurs s'écrit :
Un avantage inhérent à cette représentation est que les équations de la cinématique deviennent purement algébriques et ne contiennent plus de fonctions trigonométriques.
Les quaternions sont un système de nombres premièrement décrits par William Rowan Hamilton en 1843 appliqué à la mécanique et à l'espace à 3 dimensions.
Sir William Rowan Hamilton (04/08/1805 - 02/09/1865) est un mathématicien, physicien et astronome irlandais (né et mort à Dublin). Outre sa découverte des quaternions, il contribua également au développement de l'optique, de la dynamique et de l'algèbre. Ses recherches se révélèrent importantes pour le développement de la mécanique quantique.
Un quaternion q est une expression de la forme :
où , , , sont des nombres réels, et , , sont des symboles respectant les relations quaternioniques :
Par analogie avec les nombres complexes, est appelé partie réelle de et est appelé partie imaginaire.
L'ensemble des quaternions est un espace vectoriel de dimension 4 et de base où s'applique l'addition composant par composant. Soient deux quaternions et :
Afin d'introduire la multiplication, il faut d'abord introduire le produit hamiltonien. Les produits des éléments de base , et sont définis de la manière suivante :
La multiplication de quaternions est associative et distributive, mais pas commutative en général. Pour les quaternions q et p elle est définie par :
Elle peut être représentée par une multiplication matricielle. Dans ce cas, une matrice composée de valeurs du premier quaternion vient multiplier le second quaternion, tel que :
avec .
Le conjugué, la norme et l'inverse des quaternions et sont :
et
et
Une autre façon de présenter un quaternion consiste à dire que est la partie scalaire de et est la partie vectorielle. Ainsi, la partie scalaire est toujours réelle et la partie vectorielle toujours purement imaginaire. Bien que l'on ait dit qu'un quaternion est un vecteur dans un espace à 4 dimensions, il est courant de définir un vecteur pour la partie imaginaire d'un quaternion : et