Cinématique du satellite

Auteur: Gary Quinsac

Cinématique du point

La cinématique est l'étude du mouvement en fonction du temps indépendammant des causes produisant ce mouvement. Elle est utilisée pour décrire la trajectoire du centre de masse d'un satellite dans l'espace.

Bases de la cinématique

Des cours sur ce sujet existent un peu partout, nous rappellerons simplement quelques notions de base ici :

Dans le cas d'un mouvement circulaire, chaque point du corps tourne dans un cercle.

Cinématique et changement de référentiels

Dans notre domaine, nous sommes constamment contraints de passer d'un repère à un autre pour décrire la trajectoire d'un objet. En cas de référentiels en rotation, tels qu'un référentiel fixé par rapport à la Terre et un référentiel inertiel, passer de l'un à l'autre nécessite d'introduire des termes supplémentaires. Par exemple, si l'on veut décrire la position, la vitesse et l'accélération d'une particule dans un référentiel inertiel noté I à partir de sa position dans un référentiel terrestre (fixé par rapport à la Terre) noté F, on peut écrire :


Cinématique d'attitude

La simulation et l'estimation d'attitude nécessitent généralement des représentations simples de l'attitude, telles que celles présentées dans le chapitre du même nom. Les équations différentielles de la cinématique peuvent ainsi être obtenues pour ces différentes représentations. Les démonstrations de ces équations sont proposées en exercices.

La cinématique d'attitude relie des vitesses angulaires à des orientations dans l'espace. Si cela peut sembler simple dans le cas d'une rotation autour d'un axe fixe, cela devient beaucoup moins intuitif dans le cas d'un mouvement plus général, où l'axe de rotation varie au cours du temps. Pour un corps en rotation autour d'un axe fixe, l'orientation par rapport à cet axe peut être déterminée en intégrant la vitesse angulaire ω, puisque \omega = \frac{d}{dt}(\theta).

MCD

Dans le cas général, la matrice exprimant le taux de variation de l'attitude est plus complexe. Considérons un référentiel B en rotation par rapport à un référentiel A avec une vitesse angulaire \boldsymbol\omega_{B|A}. Si la matrice d'attitude s'exprime [T]_{B|A}, alors :

\frac{d}{dt} \left( [T]_{B|A} \right) = -[\Omega] \ [T]_{B|A} avec [\Omega] = \begin{pmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{pmatrix}

La matrice d'attitude se retrouve multipliée par une matrice anti-symétrique qui est définie à partir du vecteur \boldsymbol\omega_{B|A} représentant la vitesse angulaire du référentiel B par rapport au référentiel A, avec \boldsymbol\omega_{B|A} = \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix}.

Dans ce cas, nous avons utilisé une MCD.

Angles d'Euler

Il est également possible d'exprimer cette équation différentielle en utilisant les angles d'Euler. En reprenant la séquence de rotations [T(\theta_1)]_1 \leftarrow [T(\theta_2)]_2 \leftarrow [T(\theta_3)]_3 conduisant du référentiel A au référentiel B l'équation de la cinématique est réécrite :

\begin{pmatrix} \dot{\theta_1} \\ \dot{\theta_2} \\ \dot{\theta_3} \end{pmatrix} = \frac{1}{\textup{cos}(\theta_2)} \begin{pmatrix} \textup{cos}(\theta_2) & \textup{sin}(\theta_1) \ \textup{sin}(\theta_2) & \textup{cos}(\theta_1) \ \textup{sin}(\theta_2) \\ 0 & \textup{cos}(\theta_1) \ \textup{cos}(\theta_2) & -\textup{sin}(\theta_1) \ \textup{cos}(\theta_2) \\ 0 & \textup{sin}(\theta_1) & \textup{cos}(\theta_1) \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix}

En connaissant la vitesse angulaire d'un référentiel par rapport à l'autre en fonction du temps il est possible de déterminer la position au cours du temps d'un référentiel par rapport à l'autre. Néanmoins, l'intégration nécessite le calcul de fonctions trigonométriques ainsi que des singularités (ici \theta_2 = \pm \frac{\pi}{2}).

Quaternions

Dans le cas des quaternions, l'expression de l'équation de la cinématique se retrouve simplifiée :

\dot{\bold q} = \begin{pmatrix} \dot{q_0} \\ \dot{q_1} \\ \dot{q_2} \\ \dot{q_3} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & -\omega_1 & -\omega_2 & -\omega_3 \\ \omega_1 & 0 & \omega_3 & -\omega_2 \\ \omega_2 & -\omega_3 & 0 & \omega_1 \\ \omega_3 & \omega_2 & -\omega_1 & 0 \end{pmatrix} \begin{pmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{pmatrix}

Une écriture plus compacte est possible :

\begin{cases} \dot{\bold q}_{1:3} = \frac{1}{2} \left(q_0 \ \boldsymbol\omega - \boldsymbol\omega \wedge \bold q_{1:3} \right) \\ \dot{q}_0 = -\frac{1}{2} \ \boldsymbol\omega^T \bold{q}_{1:3} \end{cases}

Contrairement aux angles d'Euler, les quaternions ne présentent pas de singularité géométrique. L'équation cinématique exprimée avec les quaternions ne possède pas de fonctions trigonométriques, ce qui rend les quaternions parfaitement adaptés aux calculs à bord réalisés en temps réel. Ainsi, les algorithmes de détermination d'attitude modernes sont généralement décrits en termes de quaternions.