mise à jour : 1 février 2022
mise à jour : 1 février 2022
IntroductionStructures planétairesObservablesTechniques et méthodesLieux de vieAuteursBoite à outils
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Observables

objectifsThéorie simplifiée (2)

Auteur: Ronan Modolo

demonstrationDéraivation de l'équation de base des fluxgate

En utilisant la loi de Lenz, la tension électrique induite dans le bobinage secondaire est donnée par e=-N\frac{d\Phi}{dt} = -NS\frac{dB}{dt} = -NSB_e\frac{d\mu_{app}}{dt} (si B_e est constant). Soit, en utilisant l'expression de \mu_{app} déterminée précédemment : e = -NSB_e\frac{(1-D)}{\left( 1+D(\mu_r-1)\right)^2}\frac{d\mu_r}{dt} Il s'agit de l'équation basique des magnétomètres à vanne de flux.

demonstrationMesure du champ externe- utilisation de la "seconde harmonique"

La courbe caractéristique B(H) présentée à la figure suivante peut être modélisée par une fonction polynomiale du troisième ordre B(H) = a_1H - a_3H^3

où le champ magnétique H comprend à la fois le champ externe à mesurer H_{ext} et le champ ''interne'' H_{int} induit par le courant imposé dans le bobinage d'excitation (H = H_{ext}+H_{int}).

Si on impose un courant sinusoïdal au bobinage d'excitation de la forme i_e = I_{max}\sin(\omega_0 t), on induit un champ magnétique de la forme sinusoïdale H_{int} = \frac{N}{l}I_{max}\sin(\omega_0 t)=H_{max}\sin(\omega_0 t)

La tension induite dans le bobinage secondaire (le bobinage de mesure) vaut donc \begin{eqnarray}e & = & -NS\frac{dB}{dt} = -NS\frac{d}{dt}\left(a_1H-a_3H^3\right)\\& = & -NS\left(a_1\frac{dH}{dt} - 3a_3H^2\frac{dH}{dt}\right)\end{eqnarray}

en remplaçant H par son expression H_{ext}+H_{max}\sin(\omega_0t) , et en développant puis en linéarisant les fonctions trigonomériques, on montre (après quelques lignes de calculs laissées à la discrétion du lecteur) que la tension induite peut s'écrire : e = -NS(H_{max}\omega_0\cos(\omega_0t)(a_1-3a_3H_{ext}) -3a_3H_{ext}H^2_{max}\omega_0\sin(2\omega_0t) +\frac{3}{2}a_3H^3_{max}\omega_0\cos(3\omega_0t))

On identifie un terme modulé en \sin(2\omega_0t) qui dépend de H_{ext}, la deuxième harmonique (de fréquence 2f_0). On cherchera donc à extraire cette information. D'autres harmoniques peuvent être présentes (dans cette démonstration nous avons modélisé la courbe B(H) par un polynôme de troisième degré, si l'on considère un polynôme de degré plus élevé d'autres harmoniques apparaîtront dans les calculs).

Page précédentePage suivante