mise à jour : 1 février 2022
mise à jour : 1 février 2022
IntroductionStructures planétairesObservablesTechniques et méthodesLieux de vieAuteursBoite à outils
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Observables

introductionQuelques instruments et leurs caractéristiques

Auteur: Ronan Modolo
La sonde spatiale Cassini et quelques-uns de ces instruments
Cassini_instrument.png
Vue d'artiste de la Sonde Cassini-Huygens
Crédit : Crédit ESA

Nous présentons brièvement les instruments mentionnés à la page précédente et leurs principales caractéristiques.

introductionMesures magnétiques

Les magnétomètres mesurent l'intensité du champ magnétique \mathbf{B} (mesure scalaire) mais également les composantes B_x, B_yet B_z du champ magnétique (mesure vectorielle). On distinguera les magnétomètres continus (type fluxgate) qui sont sensibles aux bandes passantes 0-60Hz des magnétomètres alternatifs (type search-coil) qui sont eux sensibles aux fréquences plus élevées ( > 100 Hz). Ces derniers sont essentiellement utilisés pour l'étude des ondes.

Il y a de nombreuses méthodes pour effectuer des mesures de champ magnétique. Pour les applications spatiales, tenant compte de la grande diversité des mesures possibles et des contraintes liées aux ressources limitées (poids, puissance), il est fréquent de rencontrer des magnétomètres continus de type fluxgate.

Comme les magnétomètres sont sensibles aux courants électriques et aux composés ferreux, ils sont placés sur des mâts, relativement loin du coeur du satellite (plusieurs mètres). Ils sont souvent accompagnés d'un programme de propreté magnétique pour assurer que le champ magnétique lié au satellite est limité et ne pollue pas les mesures. Les mesures attendues varient de 0.1-3 nT (dans le vent solaire) à plusieurs milliers de nT proche de la planète (si la planète a un champ magnétique intrinsèque fort).

introductionMesures particulaires

En dépit du fait que les instruments particules utilisés en physique spatiale ont été construits avec diverses géométries et manipulant des combinaisons sur l'énergie des particules, l'état de charge, la masse des particules et l'analyse des espèces, il n'y a en fait que quelques techniques basiques qui permettent de sélectionner des particules avec des propriétés spécifiques. Ils peuvent faire appel à un champ électrostatique, ou à un champ magnétostatique, ou une combinaison de champ électrique et magnétique, ou en déterminant le temps de vol d'une particule sur une distance donnée... pour ne mentionner que ceux-ci.

Lors de la sélection d'un instrument pour une mission particulière ou si l'on souhaite comparer différents instruments plasmas, on regarde essentiellement quelques paramètres clefs. Ceux-ci sont :

  • La gamme d'énergie (ou de vitesse) couverte par l'nstrument
  • Le champ de vue de l'instrument (c'est-à-dire sa couverture angulaire)
  • La résolution dans l'espace des vitesses (norme et direction) : \left( \frac{\Delta v}{v}, \Delta \Omega \right)
  • Le facteur géométrique, qui détermine la sensibilité et la résolution temporelle de l'instrument

Nous nous intéresserons aux quelques instruments suivants :

introductionMesure des électrons

Les spectromètres électroniques permettent de déterminer la fonction de distribution des électrons des divers milieux traversés. Ces différentes régions se traduisent par des distributions de vitesse extrêmement variées. Ces instruments sont essentiellement constitués de plusieurs fenêtres d'entrées afin d'avoir une couverture angulaire la plus importante possible. Les particules chargées qui rentrent dans le système sont ensuite dirigées vers un analyseur électrostatique qui permet d'effectuer une sélection en énergie puis, en sortie de l'analyseur viennent impacter des galettes de microcanaux couplées à un système électronique qui permettent de compter les impacts et digitaliser les informations.

Ces instruments sont particulièrement utilisés dans les régions où le plasma est ''chaud'', c'est-à-dire dans le contexte des plasmas spatiaux, dont l'énergie est supérieure à une dizaine d'eV (jusqu'à plusieurs dizaine de keV).

introductionMesure des ions

Tout comme les électrons, les spectromètres ioniques doivent permettre de caractériser les fonction de distribution de cette population du plasma et s'appuient également sur le principe d'analyseurs électrostatiques. Ces instruments doivent couvrir une grande échelle d'énergie et un grand champ de vue (idéalement 4\pi stéradians). Par ailleurs la caractérisation des ions nécessite de déterminer la masse de ceux-ci. Différents principes de spectrométrie de masse sont utilisés dans la physique des plasmas spatiaux et nous présenterons deux concepts.

introductionMesures des particules de basse énergie (Sonde de Langmuir)

Une sonde de Langmuir est une sonde électrostatique qui permet de mesurer, entre autre, la densité et la température électronique et le potentiel du plasma. Cela consiste en une électrode plongée dans le plasma. Pour l'exploration spatiale, cette électrode est située au bout d'un mât, à quelques mètres du corps du satellite. En faisant varier la tension appliquée à la sonde, un courant est collecté. L'analyse de cette réponse permet d'en déduire les propriétés du plasma (densité et température électronique, potentiel du satellite).

Cette technique est utilisée préférentiellement dans une région de plasma dense et ''froid'' ( > eV) tel que les régions ionosphériques.

Page précédentePage suivante