Introduction | Structures planétaires | Observables | Techniques et méthodes | Lieux de vie | Auteurs | Boite à outils |
Définition |
Dans l'état plasma, la matière est composée, soit totalement soit partiellement, de particules chargées (électrons et ions) qui sont libres et non pas liées comme au sein d'atomes ou molécules. Cela découle simplement du fait que leur énergie cinétique liée au mouvement des particules est plus grande que l'énergie de liaison électrostatique de 13.6 eV ∼J (pour l'hydrogène). Gardons en tête que 1eV, ou un électron volt, est le travail fourni pour déplacer un électron au travers d'une différence de potentiel de un volt. C'est une unité d'énergie très utilisée en physique atomique et physique des plasmas.
Du fait de leur charge électrique, les particules interagissent avec le champ électromagnétique, d'une part parce que le mouvement des particules chargées est régi par le champ magnétique, et d'autre part parce que l'ensemble des particules est lui-même source de champ, par la densité de charge et de courants que ces mouvements entraînent.
Parmi les nombreuses propriétés des plasmas, nous retiendrons d'une part qu'un plasma est globalement électriquement neutre mais que des écarts à la neutralité au niveau microspcopique, qui découle du fait que les particules chargées sont libres, sont susceptibles d'intervenir et d'autre part que les plasmas montrent des comportements collectifs, différents des gaz neutres, régis par les forces électromagnétiques. Ces effets collectifs sont plus importants que les forces Coulombiennes entre particules chargées. Ainsi dans le cas des gaz, les ondes se propagent par l'action de collisions inter-moléculaires tandis que pour un plasma les ions peuvent se propager en l'absence de collisions au moyen de forces électromagnétiques qui agissent à distance sur les particules.
L'étude et le formalisme de la physique des plasmas s'appuient donc sur l'électromagnétisme pour décrire l'évolution du champ électromagnétique, la mécanique pour s'intéresser à la trajectoire de particules individuelles, la physique statistique qui permet de décrire l'évolution d'un grand nombre de particules et la mécanique des fluides pour comprendre le comportement global d'un fluide (électriquement chargé dans ce cas et donc les équations de la mécanique des fluides doivent être couplées avec les équations de Maxwell). La figure résume très schématiquement les interactions entre particules chargées et champ et les formalismes physique mis en jeu.
Une description plus détaillée de la physique des plasmas est disponible à la page suivante. Dans ce chapitre nous nous interessons aux instruments et aux mesures qui permettent de caractériser ce milieu.
Certaines propriétés et caractéristiques de ce milieu sont également présentées telles que :
Nous ferons appel à ces notions dans ce chapitre.