mise à jour : 1 février 2022
mise à jour : 1 février 2022
IntroductionStructures planétairesObservablesTechniques et méthodesLieux de vieAuteursBoite à outils
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Observables

Transits secondaires

Auteurs: Loïc Rossi, Emmanuel Marcq

L'intérêt d'un transit secondaire réside dans la possibilité d'effectuer une spectroscopie différentielle de la planète : si l'on mesure un spectre S_{\mathrm{star + planet}}(\lambda) juste avant ou juste après ce transit secondaire, ainsi qu'un spectre S_{\mathrm{star}}(\lambda) de l'étoile seule pendant ce transit secondaire, on peut en déduire le spectre S_{\mathrm{planet}}(\lambda) = S_{\mathrm{star + planet}}(\lambda) - S_{\mathrm{star}}(\lambda) émis ou réfléchi par la planète seule vue à angle de phase nul.

Le spectre S_{\mathrm{planet}}(\lambda) peut alors être analysé comme le serait n'importe quel spectre (par exemple en termes de température ou de composition pour un spectre thermique, ou bien de propriétés des diffuseurs pour un spectre réfléchi). C'est du moins le cas en théorie, car en pratique le faible rapport signal à bruit de tels spectres interdit à ce jour toute analyse trop poussée de ces spectres, de résolution spectrale souvent médiocre.

Courbe de lumière
stevenson.png
Courbe de lumière lors du transit secondaire de WASP-43b. Le flux en provenance de l'étoile est normalisé à 1. Le surcroît autour du transit secondaire est causé par l'émission thermique de la planète, ce qui a permis de reconstituer son profil thermique. L'insert en haut à droite représente le transit primaire.
Crédit : Figure tirée de Stevenson et al. (2014)
Page précédentePage suivante