mise à jour : 1 février 2022
mise à jour : 1 février 2022
IntroductionStructures planétairesObservablesTechniques et méthodesLieux de vieAuteursBoite à outils
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Observables

Transit primaire

Auteurs: Emmanuel Marcq, Loïc Rossi
Profondeur optique vs. longueur d'onde
transit_simu.png
Simulation d'un transit primaire
Crédit : EM
Auteur: EM

exerciceÉtude spectroscopique d'un transit primaire

Difficulté : ☆☆☆   Temps : 30 min

On considère la variation avec la longueur d'onde \lambda de la profondeur \delta d'un transit primaire autour d'une étoile de rayon R_{\star} = 7\cdot 10^5\;\mathrm{km}. Le meilleur ajustement par un modèle simple est représenté ci-dessous (l'axe des abscisses des gradué de façon logarithmique). L'échelle de hauteur de l'atmosphère de l'exoplanète sera supposée constante.

Question 1)

Estimer la profondeur du transit en l'absence d'atmosphère.

AideAideSolution

Question 2)

En déduire le rayon R de la planète.

AideSolution

Question 3)

Interpréter l'allure générale du spectre de \delta :

  • Quel phénomène peut causer les pics isolés vers 600 et 800 nm ?
  • Quel phénomène est responsable de l'augmentation constatée vers les courtes longueurs d'onde

AideAideSolution

Question 4)

Mesurer la pente K observée pour les courtes longueurs d'onde.

AideSolution

Question 5)

En déduire l'échelle de hauteur atmosphérique H, puis la température sachant que l'on a aussi H = \frac{R T}{M g}. On prendra M = 2.4\;\mathrm{g/mol}, R = 8,31\;\mathrm{J/K/kg} et g = 15.7\;\mathrm{m/s^2}.

AideSolution

Page précédentePage suivante