Décrire

Auteurs: Loïc Rossi, Emmanuel Marcq

Les composantes du flux

Le flux radiatif reçu de la part d'une planète peut être analysé comme la somme de deux composantes :

Séparation des composantes

Ces deux composantes seront traitées séparément dans la suite de ce chapitre. En général, les planètes sont largement plus froides que la photosphère de leur étoile, si bien que le flux réfléchi et le flux thermique s'observent de façon disjointe dans le spectre de la planète (voir figure). Cependant, ce n'est pas le cas pour les exoplanètes très chaudes, pour lesquelles le recouvrement des deux composantes n'est pas négligeable si bien que la séparation entre ces deux catégories perd de sa pertinence.

Composantes réfléchie et thermique
figure_corps_noirs_v6.png
Irradiances spectrales émises ou réfléchies en provenance de quelques atmosphères planétaires. On distingue les deux composantes : la composante thermique du corps et la composante correspondant au flux solaire ou stellaire réfléchi par la planète. Cette distinction perd de son sens physique pour une planète très chaude comme 51PegB.
Crédit : Loïc Rossi CC-BY-SA

Dans le cas du système solaire, il est usuel de traiter le flux à des longueurs d'onde plus courtes que 5 µm (incluant donc l'UV, le visible et l'IR proche) comme provenant quasi-exclusivement du Soleil, et les longueurs d'onde plus grandes comme provenant de l'émission thermique du corps observé (incluant donc l'IR moyen et lointain, ainsi les domaines sub-millimétrique et radio). La relation mathématique entre température d'un corps noir et la longueur d'onde du maximum spectral s'appelle la loi de Wien : pour une étoile de température de surface voisine de quelques milliers de Kelvins, il se situe dans le domaine visible voire UV, tandis que pour une planète de température effective voisine de quelques dizaines à quelques centaines de Kelvins, il se situe dans le domaine IR.


Flux stellaire


Corps telluriques

Les planètes du système solaire constituent un cas particulier intéressant puisque l'on peut résoudre leur disque et même effectuer des observations en orbite. Il est même possible pour les planètes telluriques de distinguer le flux diffusé au sein de l'atmosphère de celui réfléchi ou diffusé par leur surface solide (voire liquide dans le cas de la Terre et de Titan).

Observations atmosphériques

Dans le cas de Mars et Vénus, les spectres dans l'infrarouge proche de ces planètes sont dominés par l'absorption due au dioxyde de carbone (CO2), composant majoritaire de leurs atmosphères. Dans l'ultraviolet, le spectre de Vénus est dominé par l'absorption due au dioxyde de soufre (SO2) ainsi que par un absorbant dont la composition n'est pas encore connue. Dans le cas de la Terre, ce même domaine spectral est dominé par l'absorption due à la vapeur d'eau et au CO2 (ainsi qu'au méthane dans une moindre mesure), tandis que le spectre visible et UV révèle la présence d'ozone O3 et de dioxygène O2. Le spectre réfléchi de Titan est quant à lui largement dominé par l'absorption du méthane CH4 et des aérosols présents dans son atmosphère.

Spectre de la Terre vu par Galileo
spectre_terre_galileo.png
Luminance spectrale en provenance de la Terre et observée par la sonde Galileo alors en route vers Jupiter. Les spectres révèlent de grandes quantités d'eau, d'oxygène ainsi que du méthane. Les quantiés mesurées par Galileo témoignent d'une activité biologique intense.
Crédit : Adapté de Sagan et al. (1993).

La nature physique des objets diffuseurs varient selon le corps observé. Au sein de l'atmosphère terrestre, la diffusion est principalement le fait des molécules d'air (régime de Rayleigh), ainsi que des nuages d'eau (recouvrant à tout moment environ 50% de notre planète). Pour Vénus, les nuages épais et omniprésents empêchent toute observation de la surface en lumière solaire. Dans le cas de Mars, l'atmosphère peu dense ne crée pas beaucoup de diffusion Rayleigh, en revanche les poussières soulevées dans l'atmosphère par les tempêtes ainsi que les nuages de glace contribuent à la diffusion de la lumière solaire vers l'observateur de façon significative.

Nuages de Vénus en UV
venus2uv.jpg
Photographie en UV proche (365 nm) des nuages supérieurs de Vénus côté jour. La nature physique des contrastes observés est encore en partie mystérieuse à ce jour.
Crédit : ESA (mission Venus Express)

Observations des surfaces

L'observations des surfaces de Mars et de la Terre depuis l'espace permettent de déterminer partiellement leurs compositions : la surface de Mars comporte ainsi des oxydes de fer en quantité significative qui lui donnent cette teinte "rouillée". La présence de silicates et de phyllosilicates (dont des argiles) est également décelable, ainsi que celle de sulfates.

Surface martienne
curiosity.jpg
Panorama martien observé par le rover Curiosity de la NASA. La couleur caractéristique de la surface martienne apparaît clairement, ainsi que la diffusion de la lumière par les poussières en suspension dans l'atmosphère.
Crédit : NASA

Sur Terre, en plus des silicates et autres roches nues visibles dans les déserts, la végétation (chlorophylle) présente une absorption caractéristique en infrarouge proche. De plus, les étendues liquides (mers, océans) sont nettement reprérables également, via le phénomène de réflexion spéculaire (miroitante) typique des surfaces lisses.

Chlorophylle vue en IR proche
chloro_IR.jpg
Photographie en IR proche de la rivière Neckar en Allemagne. La réflectance très élevée de la chlorophylle des arbres est particulièrement frappante.
Crédit : Cyrill Harnischmacher

Dans le cas de Titan, les observations de surface sont limitées à quelques fenêtres spectrales dans l'IR proche. Ces dernières révèlent des zones claires et sombes indiquant une présence variable de composés organiques sombres (par rapport à la glace environnante) à la surface. Le phénomène de réflexion spéculaire est également observé près des régions polaires, indiquant par là la présence de lacs d'hydrocarbures liquides.

Réflexion spéculaire sur les lacs de Titan
Titan_specular.jpg
Réflexion en IR proche de la lumière solaire à la surface d'un lac de Titan situé près du pôle Nord.
Crédit : NASA (mission Cassini)

Les planètes géantes

Dans le cas des planètes géantes, il n'y a pas de surface à observer, seule l'atmosphère contribue au flux réfléchi. Il est difficile de sonder très profondément dans ces atmosphères, l'opacité (par absorption et diffusion) au sein de ces atmosphères croissant rapidement avec la profondeur en dessous des nuages visibles (constitués de NH3 ou NH3SH pour Jupiter et Saturne, de CH4 pour Uranus et Neptune).

L'absorption de certaines longueurs d'onde dans le visible nous renseigne aussi sur la composition gazeuse et/ou particulaire. Uranus et Neptune apparaissent ainsi bleu-vert en lumière visible à cause de l'importante épaisseur travsersée de méthane gazeux qui absorbe davantage dans le rouge. À l'inverse, sur Jupiter et Saturne, les brumes photochimiques situées en altitude comportent des chromophores de composition encore inconnue et absorbant l'UV et le bleu, ce qui donne à ces planètes une teinte globalement jaune-orangée.

Spectres des planètes géantes dans le domaine visible
sp_geantes.png
Spectres d'Uranus, Neptune, Saturne et Jupiter dans le domaine visible. On notera le faible albédo de Jupiter et Saturne dans le bleu ainsi que les fortes absorptions d'Uranus et Neptune dans le rouge (liées au méthane).
Crédit : Adapté de Karkoschka (1994).
Apparence visuelle des planètes géantes du système solaire
PlanetesGeantes.jpg

Le flux thermique

Auteurs: Loïc Rossi, Emmanuel Marcq

Analyse de composition atmosphérique

L'analyse du spectre thermique permet d'identifier divers composés (surtout atmosphériques) de par la présence de bandes ou de raies spectrales caractéristiques d'une espèce chimique.

Système solaire

Les spectres thermiques en provenance des planètes du système solaire nous renseignement notamment sur :

Notons que ces mêmes techniques sont également utilisées depuis l'orbite terrestre pour des mesures satellitaires de composition atmosphérique, notamment pour des mesures météorologiques (nuages, vapeur d'eau) ou climatologiques (CO2).

Spectres thermiques telluriques
Thermal_IR_Venus_Earth_Mars.png
Spectres des trois principales planètes telluriques connues dans l'infrarouge thermique. Les composés gazeux responsables des structures observées sont indiqués.
Crédit : NASA GSFC (Hanel et al.)
Images IR thermiques de la Terre
earth_IRmerge.png
À gauche : image Météosat dans le canal 10,5-12,5 µm (fenêtre de transparence atmosphérique). À droite : image Météosat dans le canal 5,7-7,1 µm (zone d'opacité de H2O)

Exoplanètes

Les spectres thermiques d'exoplanètes que nous sommes en mesure d'observer sont évidemment de bien moins bonne qualité que pour les objets du système solaire. Ils ne sont pas résolus spatialement (aspect ponctuel des exoplanètes), et sont en général de résolution spectrale assez faible (car on ne peut se permettre de trop disperser spectralement un flux reçu qui est en général très faible). Nous disposons néanmoins à ce jour des connaissances suivantes :


Analyse du profil thermique

Lorsque la composition de l'atmosphère est connue, la forme exacte des raies spectrales vues dans le spectre thermique peut donner à l'observateur des renseignements sur la température du milieu responsable de l'émission thermique (que ce soit la surface ou l'atmosphère). Ainsi, une atmosphère où le profil thermique décroît avec l'altitude présentera des raies en absorption, tandis qu'une atmosphère où la température croît avec l'altitude (une stratosphère, donc) présentera des raies d'émission. Une explication plus détaillée est disponible ici.

L'utilisation de ces spectres pour la mesure du profil thermique n'est possible que dans une plage limitée d'altitude selon la raie observée. Elle nécessite également un gaz dont le profil vertical d'abondance est bien connu dans l'atmosphère : c'est le cas de CO2 sur Mars et la Terre par exemple. Il est hélas impossible de se livrer à la fois à des mesures de profils de composition et de température simultanément...

Spectre thermique de Mars
mariner_mars.jpg
Spectres thermiques enregistrés par la sonde Mariner 9 en orbite autour de Mars. Le profil thermique est décroissant avec l'altitude dans les moyennes latitudes, mais croissant au pôle sud comme le montre la bande de CO2 tantôt en absorption ou en émission.
Crédit : Tiré de Hanel et al. (1972)

Exoplanètes

L'observation indirecte (par différence avec le spectre stellaire pur observable lors d'un transit secondaire) du flux thermique émis par des exoplanètes géantes permet, moyennant des hypothèses raisonnables sur leur composition, d'estimer la température des couches atmosphériques émettrices. Cependant, la faiblesse du signal impose une résolution spectale très faible, hélas insuffisante pour dériver un véritable profil vertical de température.


Méthodes

Auteurs: Loïc Rossi, Emmanuel Marcq

Observations nadir et limbe

definitionGéométrie d'une observation planétaire

Pour décrire la géométrie d'une observation planétaire, il faut au moins trois angles, que l'on choisit conventionnellement de la façon suivante :

Géométrie d'une observation spatiale
figure_geometrie_simple.png
Géométrie d'observation : en bleu \theta_0 est l'angle solaire zénithal (SZA) ; en vert \theta est l'angle d'émission (EMI) ; et en rouge l'angle α est l'angle de phase.
Crédit : Loïc Rossi CC-BY-SA

Observation nadir

L'observation en nadir consiste à observer la planète en pointant l'instrument vers son centre. On observe donc l'atmosphère ou la surface qui se trouve directement sous la sonde. Cela correspond à un angle d'émission nul. Cependant, cette condition n'est jamais rigoureusement respectée, et on considère qu'une observation est en nadir tant que l'on peut négliger la courbure planétaire, ce qui donne une limite pour l'angle d'émission de l'ordre de 30° pour des observations depuis l'orbite basse.

Observations au limbe

Pour les observations au limbe, on observe la planète selon une incidence rasante ; en d'autres termes l'angle d'émission est proche de 90°. Dans cette configuration la courbure planétaire n'est pas négligeable : on ne peut plus considérer l'atmosphère comme constituée de couches planes parallèles. Le principal avantage de l'observation au limbe est que la résolution spatiale se traduit directement en résolution verticale, tandis que les observations nadir sont en général peu précises selon cette direction (mais plus adaptées à une cartographie horizontale). Un autre avantage des observations au limbe est la démultiplication des épaisseurs optiques traversées par les rayons lumineux au sein des différentes couches, ce qui se traduit par des gains substantiels de sensibilité pour la détection et la mesure d'espèces à l'état de traces.

Observations au limbe et au nadir
nadir_limb.png
Géométries d'observations au limbe (bleu) et au nadir (rouge).
Crédit : Emmanuel Marcq CC-BY-SA

Transits et occultations

definitionTransits primaires

Un transit primaire désigne le phénomène d'éclipse partielle d'une étoile par une planète et son atmosphère. L'occultant présente alors un diamètre apparent petit devant l'occulté. Un exemple connu dans le système solaire est celui du transit de Vénus, mais l'étude de ce phénomène a connu un regain d'intérêt avec son application à la détection et à la caractérisation d'exoplanètes.

Si la planète dispose d'une atmosphère, une partie de la lumière stellaire va traverser cette atmosphère pendant le transit primaire. L'observation du spectre transmis permet alors de mesurer quelle extinction supplémentaire est causée par l'atmosphère de la planète à différentes longueurs d'onde, permettant ainsi de contraindre la nature physico-chimique de ses constituants.

definitionTransits secondaires

Un transit secondaire désigne le phénomène réciproque : c'est à présent l'étoile qui masque la planète, le plus souvent totalement étant donné que les étoiles sont bien plus grandes que les planètes.

Immédiatement avant et après un transit secondaire, on peut observer, en plus du spectre de l'étoile seule telle qu'elle apparaît en l'absence de transit, une contribution supplémentaire due au spectre émis ou réfléchi par la planète. Il est alors possible, par soustraction entre le spectre composite observé et celui de l'étoile seule (spectroscopie différentielle), d'analyser le spectre émis ou réfléchi par la planète seule. Une telle méthode exige toutefois une grande sensibilité, car la contribution d'origine planétaire est beaucoup moins intense que celle en provenance de l'étoile.

definitionOccultations

Une occultation (solaire ou stellaire) désigne un phénomène physiquement analogue à un transit primaire (l'occulté est une étoile, l'occultant une planète), mais où cette fois l'occulté est de diamètre apparent très petit devant l'occultant. L'observabilité des occultations s'accroît avec la proximité de l'observateur à l'occultant (à sa surface ou en orbite basse). Un coucher de Soleil est un exemple d'occultation d'observation quotidienne aisée. Il est toutefois possible d'observer des occultations loin de l'occultant, notamment depuis la Terre, entre un corps du système solaire et une étoile lointaine. Un autre type d'occultation aussi utilisé consiste en l'utilisation comme source de l'émetteur radio d'une sonde spatiale. L'occultant est alors l'atmosphère autour de laquelle orbite la sonde, et l'observation se fait à partir de radiotélescopes sur Terre.

L'extinction progressive (à mesure que l'occultant se place devant l'occulté) du rayonnement en provenance de la source permet alors de déduire les propriétés optiques des différentes couches atmosphériques traversées.

transit_occ.png
Illustration des transits primaire (en haut à gauche), secondaire (en bas à gauche) et d'une occultation stellaire (à droite).
Crédit : Gauche : CNES ; Droite : ESA