mise à jour : 1 février 2022
mise à jour : 1 février 2022
IntroductionStructures planétairesObservablesTechniques et méthodesLieux de vieAuteursBoite à outils
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Structures planétaires

introductionMéthodologie

Auteur: Thomas Navarro
spitzer1.jpg
Carte de température de HD 189733b, qui varie entre 650° C côté nuit et 930°C côté jour. Le décalage entre l'emplacement du maximum de température et le midi solaire révèle le rôle de l'atmosphère dans le transport de chaleur.

On connait très peu de choses sur les atmosphères des exoplanètes connues. Or cette question est fondamentale, tant pour les planètes géantes gazeuses dont l'atmosphère constitue la majeure partie de la planète, que pour les planètes à surface solide où le rôle de l'atmosphère dans leur habitabilité est primordial. Une atmosphère étant une enveloppe fluide en mouvement, son étude passe par sa dynamique et la compréhension de sa circulation.

Il existe deux méthodes complémentaires pour mieux comprendre la circulation atmosphérique : l'observation et la théorie. Notre connaissance de la circulation des atmosphères des exoplanètes est limitée car les observations sont à l'heure actuelle très difficiles. C'est pourquoi le recours à la théorie de la circulation atmosphérique, en se basant sur la mécanique des fluides, sert de socle à l'étude des circulations atmosphériques des exoplanètes. L'utilisation de modèles informatiques pour la simulation d'une atmosphère permet d'étendre cette théorie à des cas plus complexes tenant compte des nuages, aérosols, surface, etc ...

Les observations de la circulation atmosphèrique d'exoplanètes existent mais sont très rares. Par exemple, on a pu mesurer pour la planète HD 189733b son spectre d'émission et en tirer une carte de température. On a aussi pu mesurer les vents en haute altitude (d'au plus 10 000 km/h) de la planète HD 209458b par effet Doppler des lignes d'absorption du monoxyde de carbone présent dans son atmosphère. Toutefois, ces exemples restent rares si bien qu'en comparaison les observations des atmosphères planètaires de notre système solaire semblent exister à profusion. La connaissance de la dynamique atmosphérique des exoplanètes passe donc aussi et surtout par l'étude comparée des atmosphères du sytème solaire. Toutefois, notre système solaire ne présente pas toute la gamme des types d'exoplanètes connues, et par exemple l'étude d'une planète gazeuse géante chaude en rotation synchrone avec son étoile sur une orbite de 3 jours, cas assez exotique au regard du sytème solaire, passera également par la théorie et les moyens de simulation ...

conclusionConclusion

puzzle.png
Atmosphère d'une exoplanète : les éléments du puzzle à résoudre !
Crédit : Th. Navarro

Détecter et connaître les grandes caratéristiques physiques d'une exoplanète (orbite, taille, masse) est la première étape dans la compréhension d'une exoplanète. Connaître son atmosphère est la suite logique et la science actuelle en est à ses balbutiements dans ce domaine. L'étude des planètes du système solaire, tellement plus accessibles, et l'utilisation de modèles de climats s'avèrent nos meilleurs atouts pour comparer et extrapoler notre savoir à toutes les planètes en général.

Page précédentePage suivante