Introduction | Structures planétaires | Observables | Techniques et méthodes | Lieux de vie | Auteurs | Boite à outils |
Applications à l'exoplanétologie |
L'exoplanétologie pourrait aussi tirer des informations de la polarisation. En effet, la lumière d'une étoile est généralement non polarisée, tandis que la lumière réfléchie et diffusée par l'atmosphère de la planète le sera par la surface et par l'atmosphère de la planète.
Ainsi une planète qui serait noyée dans la lumière de son étoile hôte pourrait être invisible en photométrie, mais détectable en polarisation ! Mieux, selon la polarisation mesurée, on pourrait déterminer si la planète possède ou non des nuages et caractériser ces derniers.
La polarisation peut aussi donner les informations sur la planète, comme pour le système solaire. Ainsi détecter des structures polarimétriques comme des gloires ou des arcs-en-ciel pourraient indiquer la présence de nuages d'eau. À l'inverse, une polarisation de type Rayleigh pourrait indiquer que la planète ne possède pas de nuages.
Outre les paramètres de l'atmosphère ou de la surface, la polarisation peut permettre de mesurer certains paramètres orbitaux de la planète. En effet, la polarisation étant sensible à une rotation du plan de diffusion, la variation de la polarisation avec la rotation de la planète autour de son étoile peut être reliée à une inclinaison du plan orbital et/ou à une excentricité de l'orbite.
Les disques protoplanétaires peuvent aussi être étudiés par polarimétrie. La lumière de l'étoile au centre du disque est non polarisée, mais les grains du disque autour diffusent la lumière et génèrent ainsi beaucoup de polarisation. Un instrument sensible à la polarisation peut ainsi mieux voir le disque qu'en lumière normale et peut donc l'étudier plus en détail.
Pour de tels disques, on peut ainsi étudier les grains qui les composent, mais aussi identifier leur orientation et d'éventuelles structures internes. Ce genre d'observations permet ainsi de mieux contraindre les modèles de formation planétaire.