mise à jour : 1 février 2022
mise à jour : 1 février 2022
IntroductionStructures planétairesObservablesTechniques et méthodesLieux de vieAuteursBoite à outils
Entrée du siteSommaireGlossairePage pour l'impression<-->
- Observables

demonstrationTrajectoire des particules dans l'analyseur

Auteur: Ronan Modolo

Energie des particules et position du détecteur

Il est possible de décrire analytiquement la trajectoire d'une particule de charge q dans ce système. Nous présentons ici uniquement les résultats et les cacluls pourront être fait dans le cadre d'un exercice (cf exercice ). Les équations paramétriques décrivant la trajectoire sont :

\left\{\begin{array}{c}x(t) = v_0t\cos\theta \\y(t) = v_0t\sin\theta-\frac{qEt^2}{2m}\end{array}\right.

En notant \mathcal{E}_0 l'énergie cinétique initiale de la particule (à l'entrée du système), il est possible de relier la distance du détecteur (x=L) à l'énergie.

\mathcal{E}_0 = \frac{qV_a}{4\sin\theta\cos\theta}\left(\frac{L}{D}\right)

A partir d'un simple calcul d'incertitude il est possible de montrer que la résolution relative en énergie dépend de la position du détecteur et de sa largeur.

\frac{\Delta\mathcal{E}_0}{\mathcal{E}_0} = \frac{qV_a}{4\sin\theta\cos\theta}\frac{\Delta x}{x}

Ainsi en balayant le potentiel appliqué à l'électrode on pourra couvrir différentes gammes d'énergie et reconstruire la fonction de distribution en énergie.

Page précédentePage suivante