Spectromètre / Analyseur électrostatique

Auteur: Ronan Modolo

Un analyseur électrostatique

introductionPrincipe de fonctionement

Pour illustration nous prenons comme exemple le spectromètre électronique embarqué sur la mission Spatiale Cassini. Plus d'informations sont disponibles dans le papier de description instrumentale Young et al, Space Science Reviews, ..., 2004. Ce spectromètre a été construit par le Mullard Space Science Laboratory, Angleterre.

Un schéma simplifié de l'instrument est présenté à la figure suivante. Cet instrument est essentiellement un analyseur électrostatique hémisphérique de type 'top-hat' (en référence au fait qu'une petite section d'analyseur se trouve placée au dessus des électrodes de déflection).

Schéma d'un spectromètre électronique
schema_ELS.png
Représentation schématique du spectromètre électronique embarqué sur la mission Cassini et la trajectoire possible d'un électron en rouge.
Crédit : Ce schéma est une version adaptée de la figure 3 de Young et al, SSR, 2004

Les électrons entrent dans le senseur via une des huit fenêtres d'entrées qui consiste en un baffle collimateur (les huit fenêtres définissent le champ de vue de l'instrument, c'est-à-dire sa couverture angulaire ). Ces électrons sont ensuite dirigés dans l'analyseur électrostatique jusqu'au détecteur, qui dans le cas du spectromètre électronique de Cassini sont des galettes micro-canaux. Ces galettes permettent la détection des particules chargées. La sélection en énergie s'effectue dans l'analyseur électrostatique. L'analyseur consiste en deux plaques/électrodes ayant pour l'une un potentiel nul et pour l'autre un potentiel que l'on applique. Le champ électrique \mathbf E entre les deux électrodes exerce une force q\mathbf E sur la particule qui va dévier la trajectoire lorsque celle-ci entre dans l'entrefer (espace entre les deux électrodes). Les particules atteignent les détecteur lorsque le rapport E/q correspond à la force q\mathbf E générée par le champ. En faisant varier le potentiel de l'électrode, il est possible de parcourir différentes gammes d'énergie. Les mesures présentent donc un spectre d'énergie. En analysant ce spectre, et en combinant les informations sur la couverture angulaire, il sera possible de reconstruire la fonction de distribution des électrons.

L'appliquette \ref{appliquette_analyseur_electrostatique} présente brièvement le mode de fonctionnement d'un analyseur électrostatique et la trajectoire d'un électron pour une énergie incidente fixée par l'utilisateur. Les potentiels des deux électrodes ont été fixés (valeurs non connues de l'utilisateur) et il s'agit de déterminer la bande passante en énergie.


Théorie simplifiée de deux analyseurs électrostatiques

Nous présentons deux cas simples d'analyseur électrostatique :

Les analyseurs sphériques ou hémisphériques sont des extensions naturelles de ces deux types d'analyseurs et ne présentent pas de concepts différents, seuls les calculs sont un peu plus compliqués.


Analyseur électrostatique a électrodes parallèles

Pour illustrer la théorie qui se cache derrière le fonctionnement d'un analyseur électrostatique nous prendrons le cas d'un analsyeur à électrodes parallèles (cf Figure). Notons que ce genre d'instrument n'a pas été embarqué à bord de missions spatiales et est utilisé juste dans le cadre d'explication du concept sur une géométrie simple.

introductionConfiguration

Un analyseur électrostatique à électrodes parallèles consiste en deux électrodes séparées par une distance d. Une des deux électrodes est reliée à la masse tandis que l'autre électrode est fixé à un potentiel V_a (V_a >0 pour la détection des électrons, V_a <0 pour la détection des ions). Les particules entrent par un orifice d'entrée positionné en (x,y) = (0,0) avec une vitesse v_0 et un angle \theta par rapport aux électrodes. Les particules voient un champ électrostatique constant qui va modifier leur trajectoire. Les particules vont ensuite impacter le détecteur situé à une distance L de l'orifice d'entrée. Le schéma suivant illustre le montage.

Représentation schématique d'un analyseur électrostatique à électrodes parallèles
schema_ESA_parallel.png

Trajectoire des particules dans l'analyseur

Energie des particules et position du détecteur

Il est possible de décrire analytiquement la trajectoire d'une particule de charge q dans ce système. Nous présentons ici uniquement les résultats et les cacluls pourront être fait dans le cadre d'un exercice (cf exercice ). Les équations paramétriques décrivant la trajectoire sont :

\left\{\begin{array}{c}x(t) = v_0t\cos\theta \\y(t) = v_0t\sin\theta-\frac{qEt^2}{2m}\end{array}\right.

En notant \mathcal{E}_0 l'énergie cinétique initiale de la particule (à l'entrée du système), il est possible de relier la distance du détecteur (x=L) à l'énergie.

\mathcal{E}_0 = \frac{qV_a}{4\sin\theta\cos\theta}\left(\frac{L}{D}\right)

A partir d'un simple calcul d'incertitude il est possible de montrer que la résolution relative en énergie dépend de la position du détecteur et de sa largeur.

\frac{\Delta\mathcal{E}_0}{\mathcal{E}_0} = \frac{qV_a}{4\sin\theta\cos\theta}\frac{\Delta x}{x}

Ainsi en balayant le potentiel appliqué à l'électrode on pourra couvrir différentes gammes d'énergie et reconstruire la fonction de distribution en énergie.


Analyseur électrostatique à secteur cylindrique

introductionConfiguration

Un autre analyseur électrostatique simple a une géométrie cylindrique. Cet analyseur est constitué de deux secteurs cylindriques concentriques (cf Figure). Ce type d'analyseur a été utilisé lors de la mission spatiale Mariner 2. Cet analyseur a entre autre permis de fournir la confirmation expérimentale d'un vent solaire continu et de déterminer ses propriétés élémentaires [Snyder and Neugebauer, 1962].

Représentation schématique d'un analyseur à secteur cylindrique
schema_ESA_cyl.png

À cause de la géométrie cylindrique, seules les particules avec une vitesse parallèle à la normale du plan d'entrée de l'analyseur peuvent entrer dans celui-ci. Or avec une largeur d de l'entrefer, des particules avec une composante non nulle suivant le plan d'entrée de l'analyseur peuvent également se propager jusqu'à la sortie. Cela a pour conséquence d'augmenter la gamme d'énergie car les particules entrant dans l'analyseur avec un angle important par rapport à la normale peuvent être sélectionnées quand bien même leur énergie totale peut se trouver en dehors de la gamme d'énergie filtrée.


Trajectoire des particules dans l'analyseur

Dans ce genre de montage l'énergie de la particule reste constante. La force radiale est équilibrée par la force électrique et la particule chargée est maintenue sur une trajectoire circulaire de rayon

R = \frac{2\mathcal{E}\ln(R_2/R_1)}{q(V_2-V_1)}\mathcal{E} est l'énergie cinétique de la particule, V_2 et V_1 sont les potentiels appliqués aux deux électrodes.

L'analyseur sélectionne les particules ayant une énergie \mathcal{E} = \frac{q(V_2-V_1)}{2\ln\frac{R_2}{R_1}}

La constante de l'analyseur K, également appelé la sensibilité de déflection, est le rapport entre l'énergie \mathcal{E} (en eV) de la particule qui passe dans l'analyseur et la tension U appliquée entre les deux électrodes séparées de la fente de sortie d'une distance d=R_2-R_1. La bande d'énergie \Delta \mathcal{E} des particules qui passent à travers l'analyseur vaut : \Delta\mathcal{E}\sim qU/2d Une extension naturelle des analyseurs à secteur cyindrique à deux dimensions est de former des analyseurs à secteurs sphériques et les analyseurs électrostatiques hémisphériques ''top-hat''.