Se tester

Auteur: Philippe Thébault

Datation de la météorite «Allende»

exerciceDatation de la météorite «Allende»

La météorite dite « Allende », tombée en 1969 au Mexique, est probablement la météorite la plus étudiée de toute l’histoire. Elle est le représentant archétypal des chondrites carbonées, qui sont parmi les corps les plus primitifs du système solaire (cf. lien). Elle a de ce fait fortement contribué à faire connaître l’âge de notre système solaire à une très grande précision. La méthode utilisée pour cette datation se base sur la désintégration U-Pb et sur la mesure des abondances relatives des différents isotopes du plomb.

Question 1)

La Figure présente les différentes mesures isotopiques effectuées en différents endroits de la météorite. En vous basant sur ce graphe, essayez d’estimer l’âge « d’Allende » en utilisant les formules présentées au chapitre «Comprendre ». Attention: Les fractions isotopiques reportées sur le graphe ne sont pas forcément celles de la formule présentée dans le cours.

exo1-datation-allende.png


Reconstruire la nébuleuse solaire de masse minimale (MMSN)

exerciceReconstruire la nébuleuse solaire de masse minimale (MMSN)

La MMSN est une entité théorique qui permet d’avoir une idée de la structure initiale du disque proto-planétaire qui a formé les planètes du système solaire, en faisant l’hypothèse que celles-ci se sont, en gros, formées à leur emplacement actuel (cf. cours).

Question 1)

A partir de la masse et de la composition actuelle des 8 planètes du système solaire, donner une estimation de la distribution radiale de la matière solide (roches+ glaces) dans la MMSN. Pour cela on peut supposer que la masse solide de toutes les planètes était initialement repartie dans un disque continu s’étendant de l’orbite de Mercure à celle de Neptune. L'information que l'on cherche est alors quelle est la densité surfacique de matière (par exemple en kg/m2) dans ce disque en fonction de la distance radiale r au soleil. Il peut ensuite être intéressant de tracer un graphe représentant (r).

Attention: si pour les planètes telluriques la masse solide de ces planètes peut-être considérée comme étant égale à leur masse totale, il n'en va pas de même pour les planètes géantes (qui contiennent également beaucoup de gaz). La masse totale de matière solide (roche+glaces) contenue dans les planètes géantes n'est pas connue avec une grande précision, mais on pourra prendre les fourchettes suivantes:

Jupiter: entre 10 et 45 MTerre de matière solide

Saturne: entre 20 et 30MTerre de matière solide

Uranus: entre 9 et 13 MTerre de matière solide

Jupiter: entre 12 et 16 MTerre de matière solide


Estimation de la vitesse de libération d'un planétésimal

exerciceEstimation de la vitesse de libération d'un planétésimal

Question 1)

Donner la vitesse de libération vlib à la surface d’un planétésimal de taille R et de densité ρ, en supposant, pour simplifier, que celui-ci a une forme sphérique.

Application numérique : donner vlib pour un corps de 1km, pour un corps de 100km, pour la Terre, et pour Jupiter.


Croissance «ordonnée» d'une population de planétésimaux

exerciceCroissance «ordonnée» d'une population de planétésimaux

Comme nous l’avons vu (cf. lien1 et lien2 ), l’étape intermédiaire dans le scénario de formation planétaire est celle qui fait passer de planétésimaux kilométriques à des « embryons » planétaires de 500-1000km. Lors de cette étape, le processus fondamental est l’attraction gravitationelle mutuelle des planétésimaux lors de leurs rencontres. Dans sa version initiale, le modèle d’accrétion des planétésimaux supposait que ceux-ci croissent de manière « ordonnée », c’est à dire tous ensemble et à la même vitesse. Même si on sait qu’aujourd’hui ce scénario ne correspond pas à la réalité (l’accrétion se faisant par effet « boule de neige » bien plus rapide), il est quand même intéressant d’avoir une idée du rythme de croissance pour cette croissance « ordonnée ».

Question 1)

Pouvez vous ainsi estimer le temps qu’il faut pour former des corps de 1000km à partir d’une population de corps de 1km ? On supposera que :

  1. On se situe à 1UA dans une Nébuleuse Solaire de Masse Minimale (cf. cours et Exercice 2).
  2. Le disque de planétésimaux est toujours à l’équilibre dynamique, à savoir que les vitesses de rencontres V_{col} sont de l’ordre des vitesses de libération V_{lib} (attention : V_{lib} va donc évoluer au cours du temps, car cette vitesse est directement proportionnelle à la taille des planétésimaux)
  3. Les orbites des planétésimaux sont orientées de manière totalement aléatoire. V_{col} peut alors facilement s’exprimer en fonction de l’excentricité des orbites (voir cours).
  4. Il y a « équipartition » entre les composantes planes et verticales des orbites des planétésimaux, c’est à dire concrètement que leur inclinaison i = ½ e.
  5. Chaque rencontre entre planétésimaux se traduit par l’accrétion de ces corps l’un sur l’autre
  6. Tous les planétésimaux grandissent ensemble et au même rythme, c’est à dire qu’à tout instant ils ont tous la même taille
  7. Dans la MMSN, la densité surfacique de matière solide à 1UA est σ 10g/cm2
  8. La densité massique d'un planétésimal est comparable à celle d'un astéoïde, soit environ 3g/cm3


Vidage de la zone d'alimentation des embryons

exerciceVidage de la zone d'alimentation des embryons

Les phases d’accrétion boule-de-neige puis oligarchique produisent in fine un seul corps dominant (un « embryon ») à chaque distance radiale de l’étoile centrale (cf. cours « Accretion boule de neige », « Oligarchique » et « épuisement des ressources »). Un tel corps grossit en accrétant des petits planétésimaux et débris contenus dans sa « zone d’alimentation », c’est à dire un anneau radial à l’intérieur duquel tout corps aura une orbite croisant celle du corps dominant en raison de la focalisation gravitationnelle vers celui-ci (cf. lien). Pour un corps massif, la largeur de cette zone d’alimentation est environ égale à 3R_{Hill} de chaque côté de l'orbite de la planète, où R_(Hill)=R*(M_(emb)/(3*M_soleil))^(1/3) est le rayon de Hill correspondant à la « sphère d’influence » gravitationnelle du corps.

Question 1)

A) Montrer que la croissance par accrétion sur l’embryon va forcément finir par s’arrêter, car l’élargissement de la zone d’alimentation est plus lent que la croissance de l’embryon.

B) Estimer, pour une MMSN à 1UA du soleil, quelle est approximativement la masse atteinte par un embryon au moment où sa zone d’alimentation est vidée.


Réponses aux exercices

pages_mecanique-formation/exo-datation-meteoride.html

Exercice 'Datation de la météorite «Allende»'


pages_mecanique-formation/exo-mmsn.html

Exercice 'Reconstruire la nébuleuse solaire de masse minimale (MMSN)'


pages_mecanique-formation/exo-croissance-planetesimaux.html

Exercice 'Croissance «ordonnée» d'une population de planétésimaux'


pages_mecanique-formation/exo-vidage-embryons.html

Exercice 'Vidage de la zone d'alimentation des embryons'