Flux stellaire


Corps telluriques

Les planètes du système solaire constituent un cas particulier intéressant puisque l'on peut résoudre leur disque et même effectuer des observations en orbite. Il est même possible pour les planètes telluriques de distinguer le flux diffusé au sein de l'atmosphère de celui réfléchi ou diffusé par leur surface solide (voire liquide dans le cas de la Terre et de Titan).

Observations atmosphériques

Dans le cas de Mars et Vénus, les spectres dans l'infrarouge proche de ces planètes sont dominés par l'absorption due au dioxyde de carbone (CO2), composant majoritaire de leurs atmosphères. Dans l'ultraviolet, le spectre de Vénus est dominé par l'absorption due au dioxyde de soufre (SO2) ainsi que par un absorbant dont la composition n'est pas encore connue. Dans le cas de la Terre, ce même domaine spectral est dominé par l'absorption due à la vapeur d'eau et au CO2 (ainsi qu'au méthane dans une moindre mesure), tandis que le spectre visible et UV révèle la présence d'ozone O3 et de dioxygène O2. Le spectre réfléchi de Titan est quant à lui largement dominé par l'absorption du méthane CH4 et des aérosols présents dans son atmosphère.

Spectre de la Terre vu par Galileo
spectre_terre_galileo.png
Luminance spectrale en provenance de la Terre et observée par la sonde Galileo alors en route vers Jupiter. Les spectres révèlent de grandes quantités d'eau, d'oxygène ainsi que du méthane. Les quantiés mesurées par Galileo témoignent d'une activité biologique intense.
Crédit : Adapté de Sagan et al. (1993).

La nature physique des objets diffuseurs varient selon le corps observé. Au sein de l'atmosphère terrestre, la diffusion est principalement le fait des molécules d'air (régime de Rayleigh), ainsi que des nuages d'eau (recouvrant à tout moment environ 50% de notre planète). Pour Vénus, les nuages épais et omniprésents empêchent toute observation de la surface en lumière solaire. Dans le cas de Mars, l'atmosphère peu dense ne crée pas beaucoup de diffusion Rayleigh, en revanche les poussières soulevées dans l'atmosphère par les tempêtes ainsi que les nuages de glace contribuent à la diffusion de la lumière solaire vers l'observateur de façon significative.

Nuages de Vénus en UV
venus2uv.jpg
Photographie en UV proche (365 nm) des nuages supérieurs de Vénus côté jour. La nature physique des contrastes observés est encore en partie mystérieuse à ce jour.
Crédit : ESA (mission Venus Express)

Observations des surfaces

L'observations des surfaces de Mars et de la Terre depuis l'espace permettent de déterminer partiellement leurs compositions : la surface de Mars comporte ainsi des oxydes de fer en quantité significative qui lui donnent cette teinte "rouillée". La présence de silicates et de phyllosilicates (dont des argiles) est également décelable, ainsi que celle de sulfates.

Surface martienne
curiosity.jpg
Panorama martien observé par le rover Curiosity de la NASA. La couleur caractéristique de la surface martienne apparaît clairement, ainsi que la diffusion de la lumière par les poussières en suspension dans l'atmosphère.
Crédit : NASA

Sur Terre, en plus des silicates et autres roches nues visibles dans les déserts, la végétation (chlorophylle) présente une absorption caractéristique en infrarouge proche. De plus, les étendues liquides (mers, océans) sont nettement reprérables également, via le phénomène de réflexion spéculaire (miroitante) typique des surfaces lisses.

Chlorophylle vue en IR proche
chloro_IR.jpg
Photographie en IR proche de la rivière Neckar en Allemagne. La réflectance très élevée de la chlorophylle des arbres est particulièrement frappante.
Crédit : Cyrill Harnischmacher

Dans le cas de Titan, les observations de surface sont limitées à quelques fenêtres spectrales dans l'IR proche. Ces dernières révèlent des zones claires et sombes indiquant une présence variable de composés organiques sombres (par rapport à la glace environnante) à la surface. Le phénomène de réflexion spéculaire est également observé près des régions polaires, indiquant par là la présence de lacs d'hydrocarbures liquides.

Réflexion spéculaire sur les lacs de Titan
Titan_specular.jpg
Réflexion en IR proche de la lumière solaire à la surface d'un lac de Titan situé près du pôle Nord.
Crédit : NASA (mission Cassini)

Les planètes géantes

Dans le cas des planètes géantes, il n'y a pas de surface à observer, seule l'atmosphère contribue au flux réfléchi. Il est difficile de sonder très profondément dans ces atmosphères, l'opacité (par absorption et diffusion) au sein de ces atmosphères croissant rapidement avec la profondeur en dessous des nuages visibles (constitués de NH3 ou NH3SH pour Jupiter et Saturne, de CH4 pour Uranus et Neptune).

L'absorption de certaines longueurs d'onde dans le visible nous renseigne aussi sur la composition gazeuse et/ou particulaire. Uranus et Neptune apparaissent ainsi bleu-vert en lumière visible à cause de l'importante épaisseur travsersée de méthane gazeux qui absorbe davantage dans le rouge. À l'inverse, sur Jupiter et Saturne, les brumes photochimiques situées en altitude comportent des chromophores de composition encore inconnue et absorbant l'UV et le bleu, ce qui donne à ces planètes une teinte globalement jaune-orangée.

Spectres des planètes géantes dans le domaine visible
sp_geantes.png
Spectres d'Uranus, Neptune, Saturne et Jupiter dans le domaine visible. On notera le faible albédo de Jupiter et Saturne dans le bleu ainsi que les fortes absorptions d'Uranus et Neptune dans le rouge (liées au méthane).
Crédit : Adapté de Karkoschka (1994).
Apparence visuelle des planètes géantes du système solaire
PlanetesGeantes.jpg