Introduction | Structures planétaires | Observables | Techniques et méthodes | Lieux de vie | Auteurs | Boite à outils |
Radiations d’origine solaire et cosmique |
Les surfaces sans atmosphère sont également soumises à un bombardement permanent par des particules plus ou moins énergétiques en premier lieu desquelles des photons X et ultra-violet (UV) solaires, des ions issus du vent solaire et des rayons cosmiques provenant de notre Galaxie ou d’au-delà. Ces radiations modifient chimiquement, physiquement et structurellement les surfaces sur une profondeur allant de quelques micromètres à quelques mètres, en fonction de l’énergie des particules.
Le vent solaire est un flux de plasma essentiellement composé de particules d’hydrogène et d’hélium ionisées dont l’énergie est modérée (0.3-3 keV/nucléon). Ce flux varie, en température et en vitesse, avec l’activité du Soleil. Lors d’éruptions solaires et d’éjection de masse coronale, des rafales de particules solaires particulièrement énergétiques (1-100 MeV/nucléon) balayent notre système stellaire.
Les corps pourvus d’un champ magnétique propre (Mercure, Terre, Ganymède) sont protégés en grande partie des radiations, leur magnétosphère déviant les particules chargées le long des lignes de champ et agissant ainsi comme un bouclier. A l’inverse, les magnétosphères des géantes gazeuses, en piégeant et accélérant les particules chargées, produisent d'intenses ceintures de rayonnement et soumettent les satellites qui leur sont les plus proches à de grandes doses de radiations. En particulier, Io et Europe, autour de Jupiter, reçoivent des doses 100 à 1000 fois plus élevées que la Lune.
Les principaux effets du bombardement par les particules solaires et cosmiques sur les surfaces sont les suivants :
Sur ce dernier point, notons que les surfaces glacées sont particulièrement sensibles aux radiations car elles sont trois fois moins résistantes que les surfaces silicatées et plus volatiles (c’est-à-dire susceptibles de changer de phase). Rappelons que la glace d’eau peut exister sous plusieurs formes: différents états cristallins (en fonction essentiellement de la température) ou amorphes. A basses températures, le bombardement par les particules UV et les ions peut modifier la structure cristalline de la glace en surface, voire même entrainer son amorphisation. Europe, qui baigne dans magnétosphère jovienne et est, par conséquent, soumise à des taux de radiation particulièrement élevés, présente une surface jeune mais largement amorphisée alors que la phase cristalline est stable à la surface de Callisto, satellite près de 3 fois plus éloignée de Jupiter. Ganymède, qui se trouve entre Europe et Callisto et est, de surcroît, protégé par un champ magnétique propre, présente de la glace amorphe aux pôles (là où les lignes de champs sont ouvertes) et cristalline ailleurs.