Comprendre

Auteur: E. Lellouch

Des événements rares


Probabilité de transit

L’une des limitations les plus importantes de la méthode est la faible probabilité qu’une exoplanète donnée passe devant ou derrière son étoile-hôte. Il faut en effet pour cela que l’observateur se trouve pratiquement dans le plan orbital de la planète (orbite vue « par la tranche »).

Considérons une planète découverte par vitesse radiale et dont l’orientation de l’orbite est inconnue. Pour qu’elle transite devant son étoile, en notant i l’inclinaison entre la normale au plan orbital et la ligne de visée, il faut que l’on ait la relation : cos(i)<(R_e+R_p)/a, où R_e et R_p sont les rayons de l'étoile et de la planète, a est la distance projetée entre l’étoile et planète au moment où celle-ci est au plus proche de l’observateur. Compte tenu que la planète est toujours beaucoup plus petite que l’étoile, et en se limitant pour simplifier au cas d’une orbite circulaire de demi-grand axe a, on peut montrer que la probabilité de transit et celle d'éclipse secondaire sont toutes deux égales à p=R_e/a. Ceci prouve le résultat intuitif que la probabilité de transit est plus grande pour les planètes les plus proches de leur étoile.


Recherche au hasard

exerciceDétectabilité des planètes par transit

Quelle est la probabilité, pour un extraterrestre, de détecter par transit,

Question 1)

- la Terre ? - Jupiter? - une planète à 0.05 UA d’une étoile de type solaire?

Cette probabilité peut se traduire en termes du nombre moyen d’étoiles qu’il faut observer pour espérer découvrir une exoplanète transitante à un rayon orbital donné. Si on note η la fraction des étoiles possédant une telle planète, ce nombre est de l’ordre de N 1/(p*eta). Par exemple, les « Jupiters chauds » ont une distance type à leur étoile de 0.05 UA, et concernent environ 1 % des étoiles. Ceci donne p 0.1 et N 1000.

Même dans ce cas très favorable (planète proche), on voit que la recherche d’exoplanètes nouvelles par transit nécessite l’observation en aveugle de grands échantillons.

L'exercice ci-dessus montre que la probabilité de détecter la Terre par transit n'est que de 0.45%. Pour Jupiter, la probabilité est de 0.09%. En revanche, pour une planète à 0.05 UA autour d’une étoile de type solaire, la probabilité atteint 9 %. Les probabilités de transit et d'éclipse secondaire peuvent différer lorsque l’orbite planétaire est d’excentricité non-nulle (elliptique) de sorte qu’il est en principe possible d’observer un transit primaire sans transit secondaire et vice-versa.


Temps des transits


Géometrie détaillée d'un transit

Temps
transit-fig5.png
Figure 5 : Géométrie d’un transit. δ est la profondeur du transit, b le paramètre d’impact, T la durée du transit et τ la durée de l’ingress.
Crédit : à traduire

La géométrie d’un transit est représentée sur la Fig. 5.

Appelons t_It_(IV) les 4 « temps de contact », c’est-à-dire les instants auxquels les disques de la planète et de l’étoile sont tangents. L’instant moyen de l’entrée (du disque planétaire devant le disque stellaire) est t_ent=(t_I+t_II)/2; de même l’instant moyen de la sortie (du disque planétaire) est t_sor=(t_III+t_IV)/2. L’intervalle de temps séparant ces deux instants, noté T, est par définition la « durée du transit », alors que tau_ent=t_II-t_I et tau_sor=t_IV-t_III sont respectivement la durée de l’entrée et de la sortie. On note également b le « paramètre d’impact », i.e. la distance minimale – exprimée en fraction de rayon stellaire – entre la position apparente de la planète et le centre de l’étoile.


Durée du transit

Avec ces définitions, en se limitant au cas des orbites circulaires et en faisant les approximations raisonnables suivantes : R_P<<R_e<<a, et b<<1 (transit non-rasant), on peut montrer que la durée du transit est égale à : T = T_0*racine(1-b^2)T_0=R_e*P/(pi*a), P étant la période orbitale.

Par ailleurs, tau_(ent)=tau_(sor)=(T_0*k/racine(1-b^2)), où k=R_p/R_e En combinant l’expression de T_0 ci-dessus avec la 3eme loi de Kepler, et en se ramenant au cas du système solaire, on obtient T_0=13*h*(P/1*an)^(1/3)*(rho_e/rho_sol)^( - 1/3) expression dans laquelle la seconde parenthèse représente le rapport de la densité de l’étoile à celle du Soleil. Ainsi, vu depuis une autre étoile, le transit de la Terre devant le Soleil ne dure que 13 h une fois tous les ans, et celui de Jupiter ne dure que 30 h une fois tous les douze ans, ce qui illustre à nouveau la rareté du phénomène. Bien évidemment, la mesure de la période requiert l’observation d’au moins deux transits.


Mise en oeuvre de la méthode


Différents objectifs scientifiques

Les expressions ci-dessus montrent que les transits sont des événements a priori rares, puisque seule, une faible fraction des exoplanètes transitent, et parmi celles-ci, seulement pendant une faible fraction de leur période orbitale.

Il faut donc distinguer entre les différents objectifs suivants: (i) la recherche d’exoplanètes, qui comme on l’a vu nécessite l’observation de grands échantillons (ii) le suivi photométrique de systèmes planétaires découverts en vélocimétrie radiale pour voir s’ils donnent lieu à des transits (iii) la caractérisation d’exoplanètes transitantes, notamment par spectroscopie.


Equipement

De par sa simplicité, la méthode est en principe accessible avec un équipement modeste, puisqu’au premier ordre il s’agit simplement (sauf pour le troisième objectif) de suivre photométriquement une étoile qui peut être relativement brillante. De fait, le premier transit d’exoplanète (celui de HD209458b, dont l’étoile a une magnitude 8) fut observé depuis le sol, en 2000, à l’aide d’un simple télescope de 25 cm, doté d’une caméra CCD. De nombreux programmes de recherche de transits au sol ont été développés, tels que TrES, XO, HAT, SuperWASP, avec des télescopes de 10 cm qui font des relevés sur des étoiles de magnitude 10 à 12, ou OGLE, avec un télescope de 1 m pour des étoiles de magnitude 14-16. A ce jour (fin 2016), ces relevés depuis le sol ont permis de découvrir environ 250 exoplanètes, notamment avec SuperWASP et HAT.

Comme on l’a vu plus haut, le transit d'une planète géante (resp. tellurique) autour d’une étoile de type solaire produit typiquement un signal photométrique de 1 % (resp. 0.01 %). En raison de la turbulence atmosphérique, les planètes telluriques ne sont pas à la portée des observations au sol, sauf autour des étoiles naines. Ce problème est éliminé par l’emploi d’observations depuis l’espace, qui ont en outre l’avantage de s’affranchir des aléas de la météo et des interruptions jour-nuit. Dans tous les cas, l’extraction des signaux planétaires requiert des techniques élaborées de photométrie de haute précision, excluant au maximum les erreurs systématiques éventuelles. Les projets spatiaux CoRoT et Kepler et leurs résultats sont décrits ci-après.


Difficultés de la méthode


Variabilité stellaire

La description faite plus haut de la perte de flux pendant un transit suppose que le flux stellaire est indépendant de la position sur l’étoile et constant dans le temps. Dans la réalité, le rayonnement stellaire est généralement caractérisé par un assombrissement centre-bord, lié au fait que le rayonnement au limbe provient d’un niveau plus élevé, et par conséquent plus froid, dans l’atmosphère de l’étoile, que celui au centre. En conséquence, l’atténuation du rayonnement de l’étoile lors d’un transit planétaire n’est pas purement géométrique.

Aux longueurs d’onde où l’assombrissement centre-bord est important, les courbes de lumière apparaissent ainsi plus « piquées » (c’est-à-dire moins plates) près de leur centre, puisque la planète masque alors une zone de rayonnement plus intense.

De manière plus générale, les étoiles présentent des hétérogénéités locales de flux, associées notamment aux tâches stellaires liées à l’activité de l’étoile. Leur masquage pendant le transit peut conduire à des irrégularités dans le profil d’atténuation de l’étoile, ce qui compliquera la détermination du rayon planétaire. Ces problèmes sont particulièrement sérieux dans le cas des étoiles géantes et sous-géantes. L’activité stellaire, qui induit une variation temporelle du flux total émis par l’étoile, peut aussi conduire à des courbes de lumières non parfaitement reproductibles dans le temps.


Faux positifs

Faux positifs
transit-fig6.png
Figure 6 :Transit d’une exoplanète devant son étoile (a), et trois types de « faux positifs » : (b) Transit d’une naine brune ou d’une étoile de très faible masse (c) transit d’une binaire à éclipse en présence d’une étoile brillante dans un système triple (d) transit rasant d’une binaire à éclipse. Au premier ordre, toutes ces situations donnent des courbes de lumières semblables.
Crédit : à traduire

Une faible atténuation temporaire et reproductible du flux stellaire peut sembler être la signature non-ambiguë d’un passage planétaire. Pourtant, il existe d’autres situations pouvant conduire au même type de signal (Fig. 6), telles que :

  1. le transit rasant d’une étoile dans un système binaire à éclipses

  2. le cas d’un système triple incluant une étoile brillante et une binaire à éclipses peu lumineuse : dans ce cas, l’effet du transit « normal » dans la binaire à éclipses est fortement dilué par la présence de l’étoile brillante, ce qui donne au phénomène l’apparence d’un transit planétaire de faible profondeur. Une variante de cette situation est le cas où la binaire à éclipse et l’étoile brillante ne font pas partie d’un système triple, mais se trouvent dans un alignement de circonstance.

  3. Enfin, même dans les cas où on peut établir qu’il s’agit bien du transit d’un objet unique devant l’étoile étudiée, il faut encore prouver que l’objet en transit est bien une planète : en effet, les étoiles de faible masse (<10% de la masse du Soleil) et les naines brunes ont des rayons comparables à celles d’une planète géante comme Jupiter, et ne s’en distinguent que par leur masse bien plus élevée.


Débusquer les faux positifs

Il y a différentes manière de débusquer ces « faux positifs ». Ainsi les cas des transits rasants peuvent être identifiés par leur forme plus piquée (en « V ») que celle des transits planétaires (en « U »). Par ailleurs, comme on l’a vu plus haut, la durée du transit donne une mesure de la densité de l’étoile-hôte ; une solution aberrante (c’est-à-dire incohérente avec celle que l’on peut estimer à partir de la température de l’étoile) indiquera qu’il ne s’agit pas d’un transit planétaire. Enfin, pour distinguer entre une véritable planète et un objet sous-stellaire de même rayon, le seul moyen est de déterminer la masse de l’objet par vélocimétrie radiale. L’étude (et l’élimination) des faux positifs est fondamental pour les études statistiques de population planétaire. Ce taux s’avère important et fortement dépendant des types de planètes. Par exemple, dans le cas des données Kepler, il est de l’ordre de 10 à 20 % globalement, mais peut atteindre 35-55% pour les planètes géantes, plus difficiles à distinguer des étoiles de faible masse et naines brunes. En revanche, le taux de faux positifs dans le cas des systèmes multi-planétaires (en particulier dans le cas des systèmes à TTV, voir ci-dessus) est faible.


Complémentarité des méthodes


Limites de la méthode des transits

L’observation photométrique du transit ne fournit que le rapport du rayon de la planète à celui de l’étoile, pas le rayon absolu de la planète. Par ailleurs, sauf dans les cas où des perturbations gravitationnelles entrent en jeu (TTV), les transits en eux-mêmes ne contraignent pas les masses planétaires.


Complémentarité des méthodes de transit et de vélocimétrie

En revanche, l’avantage majeur des transits est que les exoplanètes détectées par cette méthode le sont également en principe par vitesse radiale, puisque l’inclinaison de l’orbite i est alors favorable et bien connue (proche de 90°). L’amplitude du signal Doppler K_e sur l’étoile est relié à la masse planétaire par : M_p/(M_p+M_e)^(2/3)=((K_e*racine(1-e^2))/sin(i))*(P/2*pi*G)^(1/3) où M_p et M_e sont la masse planétaire et stellaire, e l’excentricité, P la période, et G la constante universelle de gravitation. L’avantage ici est qu’on peut écrire sin(i)=1.


Importance des données stellaire

Densité des exoplanètes
gillon2017.png
Diagramme masse-rayon des planètes TRAPPIST-1, comparées aux planètes telluriques du Système Solaire et quelques autres exoplanètes. Sont montrées aussi les courbes theoriques pour des planètes de différentes compositions
Crédit : Gillon et al. 2017

A nouveau, une limitation est que M_e n’est pas connue. Il faut donc combiner les mesures de transit et de vitesse radiale avec des informations indépendantes sur l’étoile, typiquement obtenues via les modèles d’évolution stellaire, qui donnent des relations entre âge, luminosité, rayon, masse et composition.

Par ailleurs, comme indiqué en 2.2, la profondeur du transit k^2=(R_p/R_e)^2, la durée du transit T et la durée de l’ingress/egress contraignent le rapport R_e/aet le paramètre d’impact b, ce qui permet de « calibrer » le rayon planétaire en absolu. Si les propriétés stellaires sont suffisamment bien connues, on peut donc obtenir des valeurs absolues du rayon et de la masse planétaire, donc de sa densité, ce qui a évidemment une importance énorme pour contraindre la nature (gazeuse, glacée, rocheuse) et la structure interne de la planète.

Finalement, en combinant la relation ci-dessous avec la 3e loi de Kepler, on peut déterminer la gravité planétaire g_p=G*M_p/R_p^2 indépendamment des propriétés de l’étoile : g_p=((2*pi)/P)*(racine(1-e^2)*K_e)/(R_p/a)^2*sin(i) La connaissance de g_p est nécessaire pour l’élaboration de modèles d’atmosphères.


Spectroscopie des transits et courbes de phase


Spectroscopie du transit

Spectre en transmission de HD 209458 b
transit-fig7.png
Figure 7 : Le spectre en transmission de HD 209458b, exprimé en termes de profondeur du transit. La partie visible (<1 micron) suggère l’effet de la diffusion Rayleigh et de l’absorption par le sodium à 0.58 micron. La présence de la vapeur d’eau est clairement visible à 1.4 microns (Deming et al. 2013).
Crédit : à traduire

Comme exposé plus haut, le principe de la spectroscopie du transit est de mesurer des variations spectrales de la profondeur du transit comme diagnostic de composition atmosphérique. A une longueur d’onde où l’atmosphère absorbe, le rayon "effectif" de la planète est augmenté d’une quantité alpha*H, où H est la hauteur d’échelle de l’atmosphère et α est généralement un nombre de l’ordre de quelques unités. La profondeur du transit δ est donc augmentée de : Delta*delta=((R_p+alpha*H)/R_e)^2-(Rp/R_e)^22*R_p*alpha*H/R_e^2=2*alpha*delta(H/R_p)

Cette relation montre fondamentalement que l’effet est d’autant plus grand que H est grande, i.e. que l’atmosphère est chaude, de faible masse moléculaire, et que la gravité est faible. Par exemple, pour un Jupiter chaud (T~=unité(1300;K), g=unité(25;g*s^(-2)), masse moléculaire = 2 amu (H_2), R_p=unité(70000;km)), on obtient H~=unité(210;km), ce qui fait Delta*delta/delta=0.02 en adoptant alpha=3. Pour une "Terre" (T~=unité(300;K), g=unité(10;m*s^(-2)), masse moléculaire = 28 amu (N_2), R_p=unité(6000;km)), on trouve H=unité(9;km) et Delta*delta/delta=0.008, en prenant toujours alpha=3.

Dans les deux cas, l’ordre de grandeur est donc une augmentation relative de la profondeur du transit de l’ordre de 1% de sa valeur. Pour la planète tellurique, compte tenu que le transit géométrique est déjà inférieur à 0.01%, le signal spectral Delta*delta est donc inférieur à 10^(-6), ce qui illustre l’extrême difficulté de ce type de mesures.

Echelle de hauteur

La spectroscopie du transit primaire permet d’estimer l’échelle de hauteur atmosphérique. Imaginons d’abord que le coefficient d’absorption intrinsèque de l’atmosphère varie avec la longueur d’onde λ, mais pas avec le niveau d’altitude dans l’atmosphère. Si on note sigma(lambda) la section efficace d’absorption à la longueur d’onde λ, l’opacité en visée verticale est tau(lambda;z)=sigma(lambda)*n(z)*H, où n(z) est la concentration de l’espèce absorbante à l’altitude z. Comme le transit sonde les couches au limbe, l’opacité le long de la ligne de visée est multipliée par le facteur géométrique d’augmentation du parcours racine(2*pi*R_p/H) , et vaut donc : tau(lambda;z)~=sigma(lambda)*n(z)*racine(2*pi*R_p*H) On peut montrer que le rayon planétaire effectif à la longueur d’onde λ est égal au rayon de la surface augmenté de la hauteur z(lambda) pour laquelle l’opacité en visée horizontale vaut environ 0.56 : R_(eff)=R_p+z(tau=0.56) Comme n(z) est relié à la concentration n_0 à la surface, selon n(z)=n_0*exp(-z/H), on peut en déduire z(lambda)=H*ln(sigma(lambda)*(n_0/(0.56))*racine(2*pi*R_p*H)) ce qui confirme que l’augmentation du rayon effectif est essentiellement proportionnelle à H (le terme dans le ln variant lentement avec H).

Cette expression montre que la variation du rayon effectif avec la longueur d’onde suit : d*z/d*lambda ~=H*(d*ln(sigma)/d*lambda) Si l’on connaît le mécanisme physique responsable de l’absorption (par exemple, la diffusion Rayleigh où σ varie comme une puissance de λ), la mesure de la variation du rayon effectif avec la longueur d’onde fournit directement la hauteur d’échelle de l’atmosphère H, donc une estimation de sa composition principale si la température peut être estimée indépendamment.

Le raisonnement précédent est valable en première approximation lorsque l’opacité atmosphérique est le fait des brumes, mais l’est moins pour une absorption par les gaz, car celle-ci dépend intrinsèquement fortement de la pression. Ce développement analytique doit donc être remplacé par des modèles numériques. Il n’en reste pas moins vrai que le spectre en transmission montre la planète « plus grosse » dans les bandes d’absorption gazeuse qu’en dehors de ces bandes, et qu’il est alors possible de contraindre la composition chimique (Fig. 7).

Les premières découvertes d’espèces chimiques dans les spectres d’exoplanètes en transmission datent des années 2002-2003 avec la détection d’espèces atomiques (Na, H, et plus tard K, C, O) dans le spectre visible. Le cas de l’hydrogène atomique est particulier car il donne lieu à des transits extrêmement profonds (15%), causés par des atmosphères d’hydrogène très étendues et en échappement rapide. Dans l’infrarouge, dû à la grande difficulté d’extraire les spectres, des controverses ont eu lieu sur la réalité et surtout la quantification des signatures spectrales en termes de paramètres atmosphériques. Il semble toutefois qu’un nombre important de ces spectres montrent les signatures spectrales de H2O, celles de CH4, CO2, et CO étant également présentes sur quelques objets. Une caractéristique très fréquente est le rôle des brumes ou nuages de haute altitude, qui contribuent à l’émission dans le spectre visible et tendent à masquer les signatures des gaz dans l’infrarouge.


Spectroscopie de l'éclipse secondaire

Comme on l’a vu plus haut, l’observation de l'éclipse secondaire permet en principe de déterminer par différence la quantité de radiation que nous envoie une exoplanètes, que ce soit sous forme de lumière stellaire réfléchie ou de rayonnement thermique propre. La difficulté est ici le contraste de luminosité entre la planète et l’étoile.

La profondeur de l'éclipse secondaire s'écrit :delta_ecl ~=k^2 *(I_p/I_e) où I_p et I_e sont les intensités (par élément de surface) émises par la planète et l’étoile et k est le rapport des rayons R_p/R_e.

Dans la composante stellaire réfléchie, juste avant l'éclipse secondaire, la planète – qui présente alors sa face entièrement éclairée – reçoit une fraction (R_e/a)^2du rayonnement I_e de l’étoile, et en réémet une fraction A(lambda)*(R_e/a)^2 où A(lambda)est appelé l’albédo géométrique. Ceci correspond donc à une profondeur de l'éclipse secondaire égale à : A(lambda)*(R_p/a)^2.

Comme A(lambda)<1(et peut être <<1) et que a>R_e(et normalement a>>R_e), ceci implique le résultat intuitif que l'éclipse secondaire est (beaucoup) moins profonde que le transit primaire. Pour un albédo caractéristique de 10%, la profondeur de l'éclipse secondaire dans la composante stellaire réfléchie est de ~10^(-5) pour un Jupiter chaud à 0.05 UA (contre 0,01 pour le transit). Pour une Terre à 1 UA de même albédo, elle vaudrait 2*10^(-10) ! Si elles sont complètement hors de portée dans ce dernier cas, les mesures d’albédo sont possibles pour des Jupiters chauds (voir plus loin les résultats de Kepler) mais requièrent une haute précision photométrique et l’accumulation de nombreuses mesures.

Le contraste devient progressivement moins défavorable dans la composante thermique. Dans ce cas, le rapport I_p/I_e s’écrit comme le rapport des fonctions de Planck aux températures caractéristiques de la planète T_pet de l’étoile T_e. Dans la limite des grandes longueurs d’onde, il tend vers le rapport T_p/T_e. Pour un Jupiter chaud (T_p~unité(1000-1500;K)) autour d’une étoile de type solaire, ce terme n’est plus pénalisant que d’un facteur ~1/6 à ~1/4). Ceci explique l’allure des courbes d'éclipse les plus favorables (cf. Fig. 3). Dans ce cas, il devient envisageable d’effectuer la spectroscopie de l’émission thermique.


Emission thermique de la planète

L’interprétation d’un spectre d’exoplanète dans le domaine thermique est très comparable à celle d’un objet du système solaire. Les paramètres libres sont essentiellement la structure thermique verticale, et les profils de composition qui stipulent la distribution verticale des gaz et des nuages. De manière générale, le rayonnement mesuré satisfait à l’équation dite du transfert radiatif, qui peut s’écrire (en négligeant les phénomènes de diffusion, et en supposant l’atmosphère suffisamment épaisse pour que la surface ne soit pas sondée) : I(lambda)=intégrale((B_lambda)(T(tau))*d(exp(-tau));tau) où I_lambda est l’intensité lumineuse sortante à la longueur d'onde λ, τ est l’opacité verticale intégrée sur la ligne de visée à cette même longueur d'onde, et B_lambda*((T(tau)))est la fonction de Planck à la température T(tau)du niveau atmosphérique d’opacité tau, et où l’intégrale porte sur l’ensemble de l’atmosphère. Essentiellement, l’information sur le profil de température est contenue dans la fonction de Planck, alors que le profil vertical d’opacité contraint la composition chimique.


Comment résoudre l'équation de transfert radiatif

GCM
gcm.png
Résultat d'un GCM
Crédit : M. Turbet, F. Forget

Une méthode dite d’inversion permet en principe de remonter aux deux paramètres, mais il est généralement impossible d’obtenir une solution unique ou même précise, compte tenu de la connaissance préalable très pauvre que l’on a des objets (contrairement aux atmosphères du Système Solaire), et le plus souvent de la qualité très modeste des spectres exoplanétaires (faibles résolution spectrale et signal-sur-bruit). Des contraintes supplémentaires peuvent être injectées pour aider à l’interprétation des spectres. Ainsi, on peut chercher des solutions physiquement cohérentes entre les profils de composition et de température, compte tenu des équilibres chimiques et de condensation entre les différents gaz et les nuages. Une autre complication est qu’on s’attend à ce que les profils atmosphériques présentent des variations horizontales considérables sur la planète (variations jour/nuit notamment), qui ne peuvent évidemment pas être appréhendées à partir d’un spectre planétaire unique.

Une approche alternative moderne est de construire des modèles atmosphériques auto-cohérents à 3 dimensions à l’aide d’outils de type MCG (modèles de circulation générale, GCM en anglais), puis de les tester en regard des observations. Il est aussi fructueux de combiner la mesure de l’émission thermique avec celle du spectre en transmission au moment du transit (cette dernière étant très sensible à la composition atmosphérique mais beaucoup moins aux détails du profil de température), tout en étant conscient que les deux mesures ne sondent pas les mêmes régions de la planète ; à nouveau le passage par un MCG peut s’avérer très utile.

Malgré tout, le plus souvent, au-delà de la présence avérée de certains gaz – H2O essentiellement – les interprétations du spectre d’un objet donné peuvent être diverses, avec des divergences sur les abondances gazeuses (parfois par des ordres de grandeurs), et sur la forme des profils de température – notamment la présence ou non de couches d’inversion (stratosphères).


Courbes de phase

La mesure de la courbe de phase est également une mesure de l’émission thermique d’une exoplanète, mais le focus est alors sur la variation photométrique de cette émission avec la position de la planète sur son orbite. Celle-ci renseigne sur les variations de la température « moyenne » (stricto sensu, la température au niveau d’émission dans l’atmosphère) le long de l’orbite. En général, comme indiqué plus haut, on a ainsi accès aux variations diurnes de température. Dans le cas d’une orbite de forte excentricité, les températures dépendent surtout de la distance à l’étoile, i.e. l’écart au périastre. Dans les deux cas, cela de permet de mesurer la constante de temps radiative de l’atmosphère, i.e. le temps caractéristique de réponse aux variations d’insolation.

Difficulté de la spectroscopie des exoplanètes

A de très rares exceptions près, la spectroscopie atmosphérique requiert une stabilité et une sensibilité qui ne peuvent être atteinte que par des moyens spatiaux. Dans l’infrarouge proche, les meilleurs spectres d’exoplanète en transit et en éclipse secondaire ont été obtenus par le télescope spatial Hubble (instruments NICMOS, STIS et surtout WFC3, couvrant 0.9 – 1.7 microns). A plus grande longueur d’onde, ces spectres ont été complétés par le spectromètre IRS (couvrant 5-14 microns) du télescope spatial Spitzer, alors que les courbes de phases proviennent le plus souvent du photomètre IRAC dans 4 bandes de longueur d’onde (3.6, 4.5, 5.8, 8.0 micron, cf Fig. 3). Dans un futur proche, les observations avec le télescope spatial JWST s'annoncent très prometteuses.


Les missions Corot et Kepler et leurs résultats


Deux missions de photométrie de haute précision

Nous terminerons par une description de deux missions spatiales dédiées (au moins partiellement) à la recherche et l’étude des transits exoplanétaires, et de leurs principaux résultats.


Corot

Corot
satellite-corot.png
le satellite Corot
Crédit : CNES
Courbe de lumière de Corot-7 b
corot-exo7b.png
Crédit : ESA

CoRoT (COnvection ROtation et Transits planétaires), un programme mené par le CNES en collaboration avec l’ESA, a fonctionné de janvier 2007 à décembre 2012. Ce télescope de 27 cm en orbite géocentrique polaire était équipé de 4 détecteurs CCD couvrant un champ d’environ 3.5°. CoRoT a suivi des milliers d’étoiles de magnitude 11 à 16 avec une sensibilité photométrique d’environ 0.01 %. CoRot a permis la découverte de 31 exoplanètes. Parmi celles-ci, on peut relever les cas particulièrement intéressants suivants :


Kepler

Kepler

Nombre d'exoplanètes
transit-fig8.png
Figure 8 : Nombre d’exo-planètes découvertes par année (jusqu’au 10 mai 2016). En bleu clair et ocre, la contribution de Kepler à ces découvertes.
Crédit : à traduire
Exoplanètes candidates de Kepler
transit-fig9a.png
Figure 9a : Candidats planétaires Kepler (en date du 23/07/2015) dans un diagramme période / rayon.
Crédit : à traduire
Taille des exoplanètes
transit-fig9b.png
Figure 9b : Distribution des exo-planètes confirmées en fonction de leur rayon
Crédit : à traduire
Exoplanètes dans la "zone habitable"
transit-fig10.png
Figure 10 : Les 21 planètes de rayon inférieur à 2 rayons terrestres et se trouvant dans la zone habitable. Elles sont placées dans un diagramme montrant l’énergie qu’elles reçoivent de leur étoile (normalisée à celle reçue par la Terre du Soleil) en fonction de la température de l’étoile. Les zones vertes indiquent l’extension probable de la zone habitable selon une estimation prudente (vert clair) et optimiste (vert foncé).

Kepler, une mission du programme « Discovery » de la NASA, a été lancée en mars 2009 et a fonctionné nominalement jusqu’en mai 2013. Malgré des avaries techniques, elle a pu poursuivre son programme exoplanètes après cette date, sous le nom de mission K2. Avec un télescope de 1.4 m en orbite héliocentrique, sa précision photométrique est de 3x10-5, ce qui permet d’atteindre les planètes sub-telluriques, même si de nombreux transits sont nécessaires pour garantir des détections sans ambiguïté. Avec un champ de 115 degrés carrés, Kepler surveille en permanence 150,000 étoiles, pour la plupart de magnitude 14-16, avec une mesure photométrique toutes les 30 minutes. Un traitement automatisé détecte les «candidats », appelés aussi les Kepler Objects of Interest (KOI), i.e. les signaux pouvant indiquer le transit d’une exoplanète, mais qui doivent ensuite être inspectés/validés pour éliminer les faux positifs.

Les résultats de Kepler sont annoncés sous forme de parution régulière de liste de candidats et de planètes confirmées. Le nombre de planètes Kepler confirmées a dépassé le millier en janvier 2015, et a atteint 2325 en mai 2016 (Fig. 8). La majorité est dans la gamme des « super-Terre » (1 à 2 rayons terrestres) et « mini-Neptune » (2 à 3 rayons terrestres) (Fig. 9a, 9b). A ce jour, le nombre total d’exoplanètes confirmées découvertes par la méthode des transits est de l’ordre de 2700 (correspondant à environ 2000 systèmes planétaires), sur un total de 4000 environ. La méthode des transits est devenue, et de loin, la plus prolifique.

Outre la richesse et les études statistiques que permettent ces découvertes, on peut, comme pour CoRoT, relever quelques cas de planètes ou systèmes Kepler remarquables :


Réponses aux exercices

pages_ind-transits/candidates.html

Exercice 'Détectabilité des planètes par transit'