Histoire de la pluralité des mondes

Auteur: Yaël Nazé

Débats antiques et religieux

Auteur: Yaël Nazé

L'Autre

Une des plus grandes questions philosophiques tourmentant l’homme depuis des siècles est celle de l’« autre ». Sommes-nous uniques, création esseulée dans l’Univers, ou faisons-nous partie d’une grande communauté cosmique aux mondes innombrables ? La recherche de vie « ailleurs » s’est d’abord limitée à notre planète, les grandes expéditions rapportant la présence de nombreuses « races » aux traits étranges. Toutefois, la problématique ne se limite pas à la seule Terre ; les hommes se sont très tôt interrogés sur la présence de vie au-delà de notre atmosphère... et ce avec des fortunes diverses.

L’idée de pluralité des mondes est aussi ancienne que l’humanité. Elle faisait partie intégrante des mythes et cosmogonies anciens car toutes les tribus primitives peuplèrent le ciel... Il ne s’agit toutefois pas d’un peuple céleste de nature humaine, mais plutôt d’une cohorte divine : le firmament est donc habité, quelle que soit la culture – l’idée actuelle de vie extraterrestre s’éloigne toutefois beaucoup de ces conceptions initiales.


Débats antiques:les atomistes

epicure.jpg
Epicure
Crédit : S. Cnudde

La Grèce antique

Comme toujours, c’est la Grèce qui accueille les premiers débats « modernes » sur la pluralité des mondes. La problématique n’est alors pas discutée pour elle-même, mais s’insère dans le contexte plus global d’un courant philosophique complet.

Ainsi, les atomistes considéraient la matière composée d’éléments indivisibles, les « atomes ». Pour eux, c’était bien sûr le cas de la Terre, mais aussi du reste de l’Univers. De plus, notre monde a été créé par la collision fortuite d’atomes – un processus naturel qui peut évidemment se reproduire ailleurs : les mondes sont donc en nombre infini, à l’instar des atomes. Plusieurs philosophes antiques approuvent ces idées pluralistes. Pour Xénophane de Colophon (570-480 av. J.-C.), la Lune est sans doute habitée et il doit exister d’autres terres ; Démocrite (465-365 av. J.-C.) enseigne que la Lune présente des montagnes et des vallées, tout comme la Terre, et qu’il existe d’autres mondes créés par des agglomérats d’atomes ; Épicure (341-270 av. J.-C.) approuve ses prédécesseurs atomistes en assurant : « Il y a une infinité de mondes similaires ou différents du nôtre... Nous devons croire que dans tous ces mondes, il existe des créatures vivantes, des plantes et toutes choses que nous trouvons en ce monde. » Son disciple Métrodore le soutient en déclarant qu’« il est aussi absurde de concevoir un champ de blé avec une seule tige qu’un monde unique dans le vaste Univers. ».

Même Lucrèce (98-55 av. J.- C.) rejoint les adeptes de la pluralité en des termes très modernes : « Dès lors, on ne saurait soutenir pour nullement vraisemblable, quand de toutes parts s’ouvre l’espace libre et sans limites, quand des semences innombrables en nombre, infinies au total, voltigent de mille manières, animées d’un mouvement éternel, que seuls notre Terre et notre ciel aient été créés, et qu’au delà restent inactifs tous ces innombrables corps premiers. Et ce d’autant plus que ce monde est l’œuvre de la nature. [...] Aussi, je le répète encore, il te faut avouer qu’il existe ailleurs d’autres groupes de matière analogues à ce qu’est notre monde que, dans un étreinte jalouse, l’éther tient enlacé. Du reste, quand la matière est prête en abondance, quand le lieu est à portée, que nulle chose, nulle raison ne s’y oppose, il est évident que les choses doivent prendre forme et arriver à leur terme. Et si maintenant les éléments sont en telle quantité que toute la vie des êtres vivants ne suffirait pas pour les dénombrer ; si la même force, la même nature subsistent pour pouvoir rassembler en tous lieux ces éléments dans le même ordre qu’ils ont été rassemblés sur notre monde, il te faut avouer qu’il y a dans d’autres régions de l’espace d’autres terres que la nôtre et des races d’hommes différentes et d’autres espèces sauvages. »


Débats antiques : les opposants

aristote.jpg
Aristote
Crédit : S. Cnudde

La philosophie atomiste n’est cependant pas le seul courant philosophique de l’Antiquité, et certains sont bien plus sceptiques sur la question. Parmi les chefs de file des opposants, on compte Aristote (384-322 av. J.-C.). Dans ses théories, il considère quatre éléments, qui ont chacun leur place naturelle : la terre, plus lourde, se trouve au centre, suivie de l’eau, l’air et le feu, par ordre d’éloignement. Si l’un d’eux est écarté de sa position, il tend à y revenir : ainsi, les rochers coulent et les flammes montent. Imaginons qu’il existe une seconde Terre, un autre monde : les éléments seraient perturbés et ne sauraient vers quoi se diriger – il n’y aurait plus de « place naturelle » mais bien deux centres attractifs ! Il ne peut donc y avoir qu’un monde. De plus, Aristote pense que les quatre éléments sont confinés sur la Terre corruptible, car les cieux, parfaits, sont eux composés d’un mystérieux cinquième élément... Il semble donc absurde d’imaginer les astres habités.


Questionnement chrétien

Thomas d'Aquin
thomas-aquinas.jpg
Crédit : C. Crivelli

Au début de notre ère, la philosophie d’Aristote domine les réflexions savantes, et il faut attendre la fin du Moyen-Âge pour voir apparaître de nouveaux débats. Le problème principal est que le monde occidental, désormais chrétien, assure l’existence d’un Dieu omnipotent, incompatible avec certaines idées du philosophe grec. En effet, si Dieu avait envie de créer un deuxième monde, ce ne sont certes pas les théories d’Aristote qui l’en empêcheraient... ou alors les pouvoirs divins sont limités – une hérésie ! D’aucuns tentent de pallier cette contradiction. Ainsi, Thomas d’Aquin (1225-1274) assure qu’il n’y a aucun problème d’omnipotence dans cette question de pluralité des mondes, car la perfection peut justement se trouver dans l’Unicité de la création ! Roger Bacon (1214-1294) et d’autres assurent que, pour avoir plusieurs mondes et aucun problème de « place naturelle », il faudrait qu’un vide existe entre ces mondes, ce qui est impossible dans la philosophie d’Aristote : notre monde est donc bien unique.

Pourtant, les critiques se font de plus en plus nombreuses, avec comme antienne « Dieu n’est pas soumis aux lois d’Aristote ». En 1277, Etienne Tempier (?-1279), évêque de Paris, condamne ainsi 219 exécrables erreurs à caractère scientifique, en y incluant notamment le fait que la Cause Première ne peut créer plusieurs mondes. Jean Buridan (1300- 1358) assure quant à lui que Dieu est capable de créer un deuxième monde et de s’arranger pour que les éléments respectent les lois d’Aristote dans ce monde-là aussi ! Pour Guillaume d’Ockham (1280-1347), celui du fameux rasoir, la pluralité des mondes est une évidence, voire une nécessité – dans chaque monde, les éléments retournent à leur place, sans même le besoin d’une intervention divine. Nicole Oresme (1325-1382), évêque de Lisieux, poursuit en affirmant que, si les corps lourds restent au milieu des légers, il n’y a aucun problème. Le cardinal Nicolas de Cuse (1401-1464) va même plus loin : pour lui, l’Univers est ouvert, et la Terre n’y occupe aucune place privilégiée ; de plus, la création divine peut s’exprimer partout – tout corps étant formé des mêmes éléments. Les adeptes de la pluralité restent cependant minoritaires, et la plupart des penseurs de l’époque résolvent le problème à la manière de Thomas d’Aquin : oui, Dieu pourrait créer un autre monde mais en pratique, il n’en a fait qu’un.


Questions philosophiques et scientifiques

Auteur: Yaël Nazé

Révolution héliocentrique

Héliocentrisme
Heliocentric.jpg
Crédit : Harmonia Macrocosmica (Andreas Cellarius 1708).

Le véritable changement de mentalité doit attendre la révolution héliocentrique. Dans ce modèle, la Terre n’est qu’une planète parmi d’autres. Copernic lui-même ne tire pas les conséquences de cette idée fondamentale, mais d’aucuns s’en chargent pour lui : si la Terre n’est pas centrale, l’homme non plus ! Un des porte-drapeaux de cette nouvelle génération est Giordano Bruno (1548-1600) : « Dans le cosmos, il doit y avoir une infinité de soleils avec des planètes et la vie autour d’ elles. » ou encore « Il y a d’ innombrables soleils et d’innombrables terres, toutes tournant autour de leur soleil comme le font les sept planètes (Rappelons qu’à l’époque, Uranus et Neptune n’avaient pas encore été découvertes.) de notre système. Nous n’en voyons que les soleils parce qu’ils sont les plus grands et les plus lumineux, mais leurs planètes nous restent invisibles parce qu’elles sont petites et peu lumineuses. Les innombrables mondes de l’univers ne sont pas pires et moins habités que notre Terre. ».

Hélas, Bruno ne s’arrête pas à la pluralité et commence à remettre en cause certains fondements de la foi catholique (transsubstantiation, virginité de Marie, nature divine du Christ, etc.) en poussant les théories atomistes à l’extrême. Pour ces réflexions par trop audacieuses, il est condamné comme hérétique, puis brûlé au Campo dei Fiori de Rome le 17 février 1600. Cependant, cette exécution ne peut arrêter la marche des idées pluralistes, qui se voient même renforcées par les premières observations au télescope. Outre une confirmation de l’héliocentrisme, celles-ci montrent les astres semblables à la Terre : taches solaires et montagnes lunaires ont tôt fait d’abattre les théories de perfection céleste...


Une évidence universelle

Johannes Kepler
kepler.png
Crédit : Wikipedia

La vie ailleurs passe alors du statut d’impossibilité naturelle à celui d’évidence universelle. On imagine alors tous les corps peuplés, y compris le Soleil ! Par extension, les étoiles, soleils lointains, doivent également posséder des planètes et ces autres systèmes solaires ne peuvent qu’accueillir la vie. On y voit même la preuve de la toute-puissance de Dieu, qui n’aurait certainement pas laissé les étoiles seules, sans raison d’être.

Les plus grands scientifiques apportent alors leur soutien à l’idée. Kepler (1571-1630) pense la Lune habitée (une cavité lunaire observée par Galilée serait selon lui une digue dans laquelle les Sélènes creusent des grottes-maisons). L’illustre Allemand publie même un roman de science-fiction en 1634 dans lequel un explorateur découvre la faune et la flore de notre satellite, protégé évidemment par une atmosphère, gage de vie. Il assure toutefois que la Terre abrite les plus merveilleuses des créatures... mais il a un doute « S’il y a des globes dans les cieux semblables à notre Terre, nous battrons-nous avec eux pour savoir qui occupe la meilleure partie de l’Univers ? Car si leurs globes sont plus nobles, nous ne sommes pas les plus nobles des créatures. Alors comment est-il possible que les choses soient faites pour l’homme ? Comment pouvons-nous être les maîtres de l’œuvre de Dieu ? »


Révolution cartésienne

Les vortex de Descartes
vortex.jpg
Figure 1 : Théorie des tourbillons : "Si nous supposons par exemple que le premier ciel AYBM au centre duquel est le Soleil tourne sur ses pôles dont l'un marqué A est l'austral et B le septentrional, et que les quatre tourbillons KOLC qui sont autour de lui tournent sur leurs essieux TT, YY, ZZ, MM et qu'il touche les deux marqués O et C vers leurs pôles et les deux autres K et L vers les endroits qui en sont fort éloignés" (Descartes, 1647).
Crédit : Principia Philosophia, R. Descartes(1596-1650),
Entretiens sur la pluralité des mondes
Fontenelle_Entretiens.jpg
Figure 2 : La Marquise et le Philosophe, frontispice des Entretiens sur la pluralité des mondes.
Crédit : Bernard le Bouvier de Fontenelle

Alors que Descartes (1596-1650) reprend les idées atomistes et multiplie les « tourbillons », chacun centré sur un système solaire (figure 1), son protégé Christiaan Huygens (1629- 1695) écrit le Cosmotheoros (qui sera publié en 1698) dans lequel les planètes, mais pas la Lune, sont habitées par des êtres paisibles et savants, en majorité... astronomes. La pluralité devient alors à la mode en littérature : Pascal (1623-1662) penche pour une infinité d’univers, dont plusieurs « terres » habitées, Cyrano de Bergerac (1619-1655) envoie lui aussi ses personnages dans la Lune, tandis que Voltaire (1694-1778) met en scène un habitant de Sirius dans Micromegas...

Les idées de l’époque sont rassemblées et vulgarisées par Bernard le Bouvier de Fontenelle (1657-1757) dans son célèbre Entretiens sur la Pluralité des Mondes publié en 1686 (figure 2) . Dans cet ouvrage, on retrouve une infinité d’étoiles, toutes des soleils possédant des planètes – selon l’auteur, cette pluralité rend l’Univers encore plus magnifique qu’on ne le pensait auparavant. Fontenelle raconte même que les extraterrestres se baladent non loin et pêchent peut-être des humains comme nous les poissons (les enlèvements par des « aliens », avec trois siècles d’avance !). Les arguments en faveur de la vie extraterrestre sont énumérés : similitude de la Terre et des planètes quant aux conditions de vie, impossibilité d’imaginer d’autres usages à ces objets célestes, fécondité de la Nature et nécessité de peupler les autres planètes... Le livre connaît un succès sans égal, et se répand dans toute l’Europe.


Rédemption et preuves

Toute opposition n’est toutefois pas morte, et les thèses religieuses ont parfois bien du mal à s’accorder avec la pluralité généralisée. Thomas Paine (1737-1809) écrit ainsi en 1793 que « croire que Dieu a créé une pluralité de mondes au moins aussi nombreux que ce que nous appelons étoiles rend le système de foi chrétien à la fois petit et ridicule. » et « celui qui croit aux deux [pluralité et chrétienté] n’a que peu réfléchi à l’un comme à l’autre. » S’il existe des millions de mondes, alors comment croire que le Messie soit venu précisément sur la Terre pour sauver tous les êtres pensants de la Galaxie ? Ou alors, il passe d’un monde à l’autre « souffrant sans fin une succession de morts entrecoupées de rares intervalles de vie » de manière à sauver chaque peuple de l’Univers à son tour... Cela semble si ridicule qu’une seule conclusion doit s’imposer : la doctrine chrétienne est à abandonner. Ces idées sont peu suivies par les contemporains de Paine, qui prennent toutefois la peine de lui répondre. Timothy Dwight (1752-1817), Thomas Chalmers (1780-1847) et Thomas Dick (1774-1857) réaffirment alors que la pluralité constitue une des bases de la chrétienté, une confirmation de la Gloire de Dieu (on est loin des juges de Bruno !) – on retrouverait d’ailleurs la notion de vie extraterrestre à divers endroits des Ecritures !

Certains nouveaux groupes religieux incorporent même la pluralité directement dans leur foi : mormons, adventistes du 7e jour, swedenborghiens. Mais la question de la portée de l’incarnation christique et de la rédemption associée reste sans réponse, même aujourd’hui, et les débats continuent dans les milieux théologiques, quoique sur un ton moins passionné et surtout plus ouvert qu’au Moyen-Âge.


Anthropocentrisme

Robert Dicke
Robert_Dicke.jpg
Crédit : NAS Biographical Memoirs

Le courant majoritaire n’empêche pas plusieurs philosophes allemands du 19e siècle de renoncer également à la pluralité, en faveur de l’anthropocentrisme : G.W.F. Hegel (1770-1831) affirme ainsi que la Terre est la plus excellente des planètes ; L. Feuerbach (1804-1872) assure que la Terre est l’âme et la raison d’être du cosmos ; A. Schopenhauer (1788-1860) accepte la présence d’extraterrestres mais considère l’humanité au pinacle de la création ; G.W. von Leibniz (1646-1716) et d’autres soutiennent ces idées...

Certains rapprochent également les tenants du « principe anthropique » de ce courant centré sur l’homme. Ce principe fut introduit dès 1961 par Robert Dicke (1916-1997), qui assurait que l’âge de l’Univers n’est pas quelconque mais «limité par des critères liés à l’existence de physiciens. » En 1973, l’idée est reprise par Brandon Carter (1942-), qui sépare la chose en deux versions : la faible et la forte. La première peut s’exprimer comme suit : « ce que l’on peut s’attendre à observer doit être restreint par les conditions nécessaires à notre présence en tant qu’observateurs ». Exemple : l’Univers ne peut être trop vieux car il faut que le carbone, brique indispensable à la vie, ait eu le temps d’être formé dans les étoiles et distribué un peu partout ; il ne peut être trop grand sinon il ne resterait plus que des cadavres stellaires inhospitaliers. La seconde version va plus loin encore et affirme que « l’Univers, et donc les paramètres fondamentaux dont il dépend, doivent être tels qu’ils admettent la création d’observateurs en son sein à un certain stade » – en résumé, la vie est donc essentielle au cosmos. Exemple : la constante de gravitation ne peut être ni plus petite, sinon il n’y aurait que des étoiles rouges et froides, ni plus grande, sinon les étoiles bleues et chaudes, tout aussi hostiles à la vie, domineraient le ciel.

Un lien esprit-matière est invoqué et selon John A. Wheeler (1911-2008), l’Univers s’adapte pour rencontrer les besoins de la vie et de l’esprit. Si les « observateurs » ne doivent pas en principe être nécessairement humains, c’est bien dans le cadre de l’humanité que ce principe a été formulé : certains adhérents au principe ne croient d’ailleurs pas en la vie extraterrestre. On peut d’ailleurs rapprocher ces idées de la pensée du biologiste Alfred R. Wallace (1823-1913) qui déclarait au début du 20e siècle « L’objectif final et la raison de ce vaste univers était la production et le développement de l’âme vivante dans le corps périssable de l’Homme. ».

Le principe anthropique, surtout dans sa version forte, est loin de faire l’unanimité. Le grinçant Fred Hoyle (1915-2001) ironise sur le sujet : « ce n’est pas tant l’Univers qui doit être compatible avec nous, que nous qui devons être compatibles avec l’Univers. Le principe anthropique a inversé la donne. » Certains dénoncent un problème important de ce principe : l’impossibilité de le tester, d’en obtenir des prédictions – il ne s’agirait donc peut-être pas d’une théorie, mais d’une profession de foi... D’aucuns insistent dans cette voie et assurent n’y voir qu’une version plus scientifique et sophistiquée de l’argument de « design » en faveur de l’existence d’un dieu...


Habitable n'est pas habitée

Camille Flammarion
Flammarion_Juvisy_observatory.jpg
Camille Flammarion, farouche défenseur de la pluralité.
Crédit : Wikipedia

Certains penseurs préfèrent attaquer la pluralité dans ses postulats de base. Un bon exemple est William Whewell (1794-1866), pluraliste en 1827 devenu anti en 1850. Il s’interroge sur les preuves dont on dispose pour affirmer la pluralité des mondes, et n’en trouve aucune de bien tangible. L’Univers est grand, soit, mais il n’y a à l’époque aucune preuve que les étoiles possèdent des planètes, ni que les étoiles sont véritablement semblables au Soleil (au niveau de la stabilité, des propriétés physiques, etc.). Il réfute l’idée selon laquelle la variabilité d’Algol est due au passage d’un corps opaque (une planète ?) devant l’astre. Même dans notre Système solaire, on n’est pas sûr que les autres planètes soient habitables, ni alors, ni aujourd’hui ! Enfin, Whewell s’oppose également à la doctrine du « Tout doit servir » : on sait alors que la Terre est restée longtemps inhabitée... notre civilisation ne représente donc qu’un « atome de temps », alors pourquoi la Terre ne serait pas qu’un « atome d’espace » dans l’Univers ? Whewell récuse donc l’utilisation de l’analogie à tout va : il exige des preuves concrètes avant de discuter de ce problème – qui selon lui dépend donc plus de la science que de la religion. Précisons aussi que Whewell est le premier à décrire le concept de « zone d’habitabilité » et à reconnaître que la présence de vie n’implique pas nécessairement la présence de vie intelligente. Ses écrits font beaucoup de bruit et sont ardemment débattus, mais ils diminuent finalement peu le soutien général en faveur de la pluralité. On retrouve ainsi tout au long du 19e siècle des déclarations comme « Il faudrait avoir retiré bien peu de fruits de l’étude de l’astronomie pour pouvoir supposer que l’homme soit le seul objet des soins de son Créateur, et pour ne pas voir, dans le vaste et étonnant appareil qui nous entoure, des séjours destinés à d’autres races d’êtres vivants. » (François Arago, 1786-1853) ou « La vie se développe sans fin dans l’espace et dans le temps. Elle est universelle et éternelle. Elle remplit l’infini de ses accords, et elle règnera à travers les siècles, durant l’interminable éternité » (Camille Flammarion, 1842-1925).


Observations et recherches

Auteur: Yaël Nazé

Universalité de la matière

Une nouvelle technique va changer un peu la donne : la spectroscopie, un moyen d’étudier à distance la composition chimique et les propriétés chimiques des astres – on possède enfin un moyen de tester les hypothèses à la base de la pluralité. Cette science va permettre de prouver que la matière est, essentiellement, partout la même dans l’Univers, ajoutant de l’eau au moulin des pluralistes. Elle va toutefois ruiner leurs espoirs dans d’autres domaines : non-détection de l’atmosphère lunaire (les Sélènes font leurs bagages...) ; ailleurs, présence de gaz toxiques ou conditions de pression et de température très défavorables à la vie. Le débat sur la vie extraterrestre va se mettre à osciller entre pessimisme (surtout première moitié du 20e siècle) et optimisme (surtout seconde moitié du 20e siècle) : formation des planètes, théories biologiques, observations martiennes apportent alors chacune leur lot de (dés)illusions.


Formation planétaire

kant2.jpg
figure 1 : Immanuel Kant
Crédit : S. Cnudde
laplace2.jpg
figure 2 : Pierre-Simon de Laplace
Crédit : S. Cnudde

La question de la formation des systèmes planétaires pimente le débat. Une première théorie, élaborée par Immanuel Kant (1724-1804, fgure 1) et Pierre-Simon de Laplace (1749-1827, figure 2), part de la « nébuleuse primitive » : l’ensemble du Système solaire naît d’un nuage qui se contracte; sa rotation accélérant, le nuage donne naissance à un disque plat; en se refroidissant, ce disque devient instable et se divise en anneaux qui donnent naissance aux planètes.

Rapidement, on met en évidence un sérieux problème dans ce modèle. En effet, les planètes de notre Système solaire tournent rapidement alors que le Soleil, qui possède la majorité de la masse du système, tourne très lentement sur lui-même. À l’époque, on ne connaît aucun moyen pour une étoile de se débarrasser du moment cinétique et cette observation indiscutable conduit alors à l’abandon de la théorie.

Entre 1897 et 1901, Thomas C. Chamberlin (1872-1952) et F.R. Moulton (1872-1952) relèvent les difficultés de la théorie nébulaire et envisagent une alternative, déjà imaginée par Buffon au 18e siècle. Le Système solaire se serait formé suite à une collision : un astre serait passé près du Soleil, et en aurait arraché un peu de matière par effet de marée; celle-ci prend la forme d’un jet spiralé, dont les petits noyaux denses forment les planètes par accrétion de planétésimaux. Comme les astres sont séparés par des distances importantes, les collisions sont rares dans notre Galaxie... donc les systèmes planétaires aussi ! Chamberlin propose d’identifier les « nébuleuses spirales » à des systèmes planétaires en formation. Cette dernière partie sera vite oubliée, pour ne retenir que l’essentiel de la théorie : la collision. En 1916, James Jeans (1877-1946) reprend le travail de ses prédécesseurs et tente de modéliser le phénomène. Il arrive finalement à un filament de gaz chaud, qui se condense en planètes directement, et calcule que dans notre Galaxie, une rencontre entre étoiles se produit tous les trente milliards d’années, soit le double de l’âge de l’Univers : les systèmes planétaires sont donc bien rares. De plus, les astronomes connaissent alors de nombreux systèmes binaires : notre Soleil vivant seul, cela prouve bien que le Système solaire est loin d’être une norme universelle !

Relevons une contradiction dans les théories de Chamberlin : les collisions sont rares, donc les systèmes planétaires aussi ; toutefois, si les nébuleuses spirales sont bien de jeunes systèmes planétaires, alors ils sont assez courants puisqu’on en connaît alors des centaines. De plus, comme le remarquera T.J.J. See, s’il s’agissait vraiment de cela, on devrait observer plus de spirales là où les étoiles sont plus nombreuses, ce qui est juste le contraire des observations... Plus tard, on démontrera que ces « spirales » sont en fait d’autres galaxies.

Une vingtaine d’années plus tard, on démontre qu’il est impossible de former avec ce modèle des planètes dont la composition et les orbites sont celles que l’on observe, que de telles collisions ne peuvent arracher suffisamment de matière pour former le Système solaire dans son ensemble, et que le filament obtenu est de toute façon instable. La théorie nébulaire, et avec elle les cortèges de planètes, resurgit alors dans les années 1940. Des modifications permettent d’éliminer le vieux problème : une grande partie de la nébuleuse primitive est évacuée dans l’espace, emportant la majorité du moment angulaire – on ajoutera ensuite l’action du vent solaire dans le ralentissement du Soleil. Avec le retour de ce modèle, les systèmes planétaires sont alors de nouveau nombreux dans l’imaginaire astronomique...


La biologie entre en jeu

Exprience de Miller
Miller-Urey.png
Figure 1 : Schéma de l’expérience de Miller. On produit des décharges électriques dans un ballon contenant les gaz primitifs, et des composés organiques se forment alors.
Crédit : Wikipedia
ALH84001
ALH84001_structures.jpg
Figure 2 : Structure étrange dans la météorite martienne ALH84001.
Crédit : Wikipedia

Alors qu’il s’agit de discuter la présence de vie, la biologie est curieusement absente des débats jusqu’à l’aube du 20e siècle, laissant les astronomes et les philosophes occuper le premier plan. À la fin du 19e siècle, les choses commencent à changer.

Louis Pasteur (1822-1895) mettant à mal les théories de génération spontanée, certains proposent alors que la vie terrestre vient d’ailleurs (théorie dite de panspermie)... Lord Kelvin (1824-1907) décrit ainsi les météorites comme des fragments de planètes verdoyantes venues féconder la Terre. Se disant que la descente dans l’atmosphère et la collision brutale avec le sol doit détruire la vie dans ces objets, Svante Arrhénius (1859-1927) propose plutôt que les spores présents dans l’atmosphère soient gentiment poussés par la pression de radiation pour finir par ensemencer, sinon l’Univers, tout au moins le Système solaire. Il calcule que des spores terrestres atteignent ainsi l’orbite de Mars en vingt jours, et l’étoile la plus proche en neuf mille ans. Il suppose que les températures glaciales de l’espace interstellaire suspendent le pouvoir de germination de ces « graines » – certains expérimentent et constatent que c’est bien le cas ; toutefois, le rayonnement ultraviolet a tendance à détruire les cellules vivantes...

Cependant, lors de la mission d’Apollo 12, les astronautes récupérèrent des morceaux d’une sonde, Surveyor 3, qui avait atterri deux ans plus tôt. Après une analyse détaillée, on trouva sur la caméra de la sonde une centaine de bactéries Streptococcus mitis qui avaient survécu, sans eau ni nourriture, au vide de l’espace, à ses radiations dangereuses et à ses températures extrêmes (20K) ! Depuis peu, on pense toutefois que la caméra aurait pu être contaminée à son retour. Toutefois, en parallèle, diverses expériences ont été menées et ont montré que certains petits organismes pouvaient résister aux conditions extrêmes de l'espace.

Plus récemment, Fred Hoyle et Chandra Wickramasinghe (1939 -)reprennent l’hypothèse de panspermie, en assurant que l’absorption ultraviolette du milieu interstellaire est due à des virus ou des algues (leur arrivée dans l’atmosphère provoquant des épidémies sur Terre), que la poussière interstellaire est peut-être de la cellulose, ou encore que les explosions récurrentes du nombre de nouvelles espèces correspondent à l’arrivée massive de « semences » spatiales. Allant plus loin encore, Francis Crick (1916-2004) et Leslie Orgel (1927-) proposent une panspermie dirigée – des vaisseaux spatiaux extraterrestres envoyés délibérément pour féconder les planètes... Tout cela ne règle évidemment pas le problème de l’apparition de la vie, reportant le problème de la Terre à une autre planète.

Dans les années 1950, Melvin Calvin (1930-2007) et Stanley Miller (1911-1997) arrivent à produire des substances organiques (acide formique pour le premier, acides aminés pour le second) à partir d’un mélange de gaz « primitifs » (figure 1).

Très vite, ces résultats font l’effet d’une bombe : si l’on arrive à produire ces composés aussi facilement, cela implique que la vie est possible ailleurs ! Les astronomes découvrent d’ailleurs des composés organiques dans le milieu interstellaire voire des acides aminés dans des météorites... Certains assurent même y avoir trouvé des « algues » (Nagy & Claus en 1961 et Mc Kay en 1996 pour ALH84001, figure 2), mais ces résultats sont encore loin d’être confirmés. Tout cela, combiné à la découverte de vie dans les conditions les plus extrêmes de la Terre, pousse certains à l’optimisme : « Il y a aujourd’hui toute raison de penser que l’origine de la vie n’est pas un ‘heureux accident’ mais un phénomène complètement régulier. » (A.I. Oparin en 1975).

Côté théorique, la fin du 19e siècle a vu Charles Darwin (1809-1882) et Alfred R. Wallace introduire l’idée de sélection naturelle. Cette théorie permet d’envisager l’évolution dans d’autres conditions – comme celles régnant sur d’autres planètes, par exemple. Elle pousse au départ à l’optimisme mais il apparaît rapidement que l’évolution de la vie sur Terre ne s’est pas faite de façon très linéaire... Wallace affirme ainsi qu’il a fallu des millions de petites modifications pour arriver à l’Homme – obtenir la même chose ailleurs est donc impossible ; de plus, l’humanité est la seule race intelligente sur Terre – la possibilité d’une intelligence extraterrestre est donc encore plus faible. Beaucoup reprennent ces idées : « L’homme sait enfin qu’il est seul dans l’immensité indifférente de l’Univers d’où il a émergé par hasard. Non plus que son destin, son devoir n’est écrit nulle part. À lui de choisir entre le Royaume et les ténèbres.» (J. Monod en 1970), «La pleine réalisation de la quasi-impossibilité de l’origine de la vie nous rappelle combien cet événement était improbable. » (E. Mayr en 1982). Sans preuves observationnelles, le débat reste actuellement ouvert. Les scientifiques les plus optimistes s’accordent toutefois à dire que « vie extraterrestre » ne rime pas avec « humains » : le chemin évolutif ayant probablement été différent ailleurs, les formes de vie le seront aussi.


Mars la fertile

Une des cartes de de Mars de Percival Lowell
carte_lowell.jpg
Crédit : P. Lowell

Mars la fertile

La planète rouge, proche voisine de la Terre, est un lieu d’expérimentation idéal pour les théories pluralistes. Peuplée dès le 16e siècle, comme les autres planètes, Mars va occuper le devant de la scène aux 19e et 20e siècles.

C’est le moment où l’on commence à cartographier la planète en détails. En 1858, le père Angelo Secchi (1818-1878) observe la planète rouge et en décrit les structures. Pour certaines, il utilise le terme de canali. Il baptise par exemple la région de Syrtis Major « canal de l’Atlantique ». Pour Secchi, il s’agit là de structures tout à fait naturelles, tout comme l’Atlantique sur Terre n’a pas été construit par la main de l’homme. Quelques années plus tard, William Rutter Dawes (1799-1868) décrit lui aussi des « mers » martiennes, larges taches sombres, se terminant par de longs bras noirâtres.

Il faut préciser que les astronomes n’observent pas Mars n’importe quand. Tous les deux ans environ, Mars se trouve à l’opposé du Soleil, vu depuis la Terre. À cet instant, il est près de la Terre et donc observable dans les meilleures conditions : il s’agit d’une opposition. C’est le moment rêvé pour envoyer des sondes vers la planète rouge. Cependant, les orbites de la Terre et de Mars sont elliptiques : les oppositions peuvent avoir lieu n’importe où, mais certaines sont plus favorables que d’autres (le diamètre apparent lors des oppositions varie entre 14 et 25 secondes d’arc, contre 4 arcsecondes lorsque Mars est très éloigné). Lorsque la distance entre les deux planètes est minimale, on parle de grande opposition. Celles-ci se produisent environ tous les 18 ans, et celle de 1877 marqua l’histoire.

Cette année-là, Asaph Hall (1829-1907) découvre les deux satellites de Mars, et Giovanni Schiaparelli (1835-1910) décide de cartographier la planète. Il utilise une nomenclature similaire à celle utilisée pour la Lune : mers, continents, etc. Mais il reprend également la notation de Secchi, canali, pour désigner de petites structures longilignes noires. Ce terme sera parfois utilisé dans le sens de « canal », ce qui a une signification totalement différente du « bras de mer » de Secchi : il s’agit d’une structure artificielle, ce qui suppose donc l’existence de constructeurs ! Et ce terme possède une résonance bien particulière dans l’Europe du 19e siècle. En effet, à l’époque, on vient de terminer péniblement les titanesques travaux du canal de Suez : si l’on ne doutait pas de l’existence de petits martiens, une civilisation capable de construire ainsi des canaux sur toute la planète s’annonce bien plus avancée que la nôtre !

Schiaparelli continue ses observations lors de l’opposition suivante. Ce n’est plus une grande opposition, et Mars est donc moins bien visible. Malgré cela, ses canaux s’affinent et certains se dédoublent même: c’est le phénomène de gémination. Diverses campagnes d’observation sont entreprises, et beaucoup d’astronomes commencent à apercevoir ces structures géantes. On disserte sans fin sur leur raison d’être : Schiaparelli y voit un grand système hydrique, mais pas forcément artificiel, certains sont encore plus modérés, mais d’autres au contraire plus enthousiastes. Une partie des astronomes conclut ainsi que les « mers » sont en fait de simples forêts, car certains canaux les traversent. Une végétation que l’on voit d’ailleurs grandir et mourir au fil des saisons : il n’y a pas de doute, Mars est bien une planète vivante.

C’est ici qu’entre en scène un astronome peu commun : Percival Lowell (1855-1916). De famille fortunée, le jeune Percival s’intéresse très tôt à l’astronomie, mais il la délaisse bientôt pour les affaires et la diplomatie. La quarantaine venue, le milliardaire revient à ses premières amours. Sur ses fonds propres, il construit à Flagstaff un observatoire tout entier dédié à l’observation de la planète rouge. Dès le départ, il annonce qu’il va étudier les canaux, et ses cartes deviennent rapidement une référence dans le monde. Avec 400 canaux environ, c’est un vaste système d’irrigation qui semble sillonner la planète. Lowell en est convaincu : les Martiens sont des jardiniers (d’où leur couleur verte ?) luttant pour leur survie sur une planète désertique, avec de l’eau qu’il faut péniblement acheminer depuis les lointaines calottes polaires nord et sud. D’ailleurs, lorsque deux canaux se croisent, ne voit-on pas une large tache sombre, indiquant la présence d’une oasis ? Toutefois, des contradictions se font jour : certaines photos montrent bien des canaux mais ceux observés dans un petit télescope ne se dévoilent parfois pas dans les instruments plus grands; sur un même télescope, durant une même nuit, les observations rapportées changent selon l’observateur ; une même personne ne voit pas toujours ces canaux de la même façon,...


Mars, les observations

Schiaparelli/Antoniadi
Antoniadi_Mars1.gif
Une des cartes que Schiaparelli dressa de Mars (en haut), à comparer à une des cartes d’Antoniadi (en bas)
Crédit : Antoniadi (La planète Mars)
Le visage sur Mars
visagemars.png
"The face", une signature en forme de visage humain laissée par une civilisation décadente... une image de basse résolution prise par Viking et une image à haute résolution de la même région.
Crédit : NASA/ESA

Vu le peu de certitudes, il existe donc quelques opposants à la théorie des canaux artificiels, par exemple le français Eugène Antoniadi (1870-1944). Ce dernier était pourtant au départ convaincu de l’existence des canaux. Mais après de longues heures d’observation, il doit cependant revenir sur ses convictions, et analyse les canaux comme de simples alignements fortuits. Pour convaincre le monde scientifique, son collègue Edward Maunder (1851-1928) tente même une expérience dans une classe. Dessinant sur une feuille de papier une carte de Mars « naturelle » (quelques points au hasard), il demande aux élèves de reproduire ce qu’ils voient : si les élèves du premier rang copient fidèlement les points disposés au hasard, les potaches du dernier rang dessinent consciencieusement des lignes droites... imaginaires. L’esprit humain, assurent Antoniadi et Maunder, a tendance à (sur)interpréter les choses naturelles, et à dessiner des lignes là où il n’y a rien de particulier en réalité. De plus, la mauvaise qualité des instruments de l’époque n’arrange rien.

Mais le courant opposé a tôt fait de balayer les objections d’Antoniadi et des autres opposants : ils ne sont jamais que de piètres observateurs, prévient-on ! Et d’ailleurs, Antoniadi, basé à Meudon, ne pourrait pas distinguer de fins détails sur la planète rouge à travers les cieux parisiens si pollués !

À la fin du 19e siècle, quatre interprétations circulent : une illusion (Maunder, Newcomb, Antoniadi), des structures réelles et continues dues à des craquelures dans la surface martienne (Pickering, Eddington), de fines lignes naturelles (Schiaparelli), de fines lignes artificielles (Lowell, Flammarion, Lockyer, Russell). Beaucoup d’astronomes modérés sont persuadés de l’existence de la vie sur Mars – tous ne vont pas jusqu’à soutenir l’image des Martiens bâtisseurs, mais Lowell a la presse pour lui et son modèle devient extrêmement populaire. Les médias diffusent l’affaire, et certains vont jusqu’à affirmer que les canaux forment le nom de Dieu en hébreu ou que les habitants nous envoient parfois des signaux ! Des romans mettant en scène les hypothétiques Martiens fleurissent, le plus connu étant certainement « La Guerre des Mondes » d’Herbert Georges Wells (dont la lecture radiodiffusée par Orson Welles le 30 octobre 1938 provoqua une panique sans précédent).

Le passage au 20e siècle ne clôt pas les débats. Certains astronomes affirment en 1909 avoir détecté de l’eau et de l’oxygène dans l’atmosphère martienne, voire en 1956 des molécules organiques... observations infirmées par la suite (elles étaient dues à une contamination par l’atmosphère terrestre).

Finalement, en juillet 1965, Mariner 4, première sonde lancée à l’assaut de la planète rouge, envoie ses premières images : Mars est une planète désolée, glacée et pratiquement sans air. Il n’y a nulle trace des fameux canaux, comme le confirmeront d’ailleurs les successeurs de Mariner.

Après l’observation de loin vient le temps des tests sur place. En 1976, les sondes Viking emportent avec elles quatre expériences destinées à tester la présence de vie sur Mars : Gas Chromatograph-Mass spectrometer (analyse des composés du sol martien), Gas exchange (si un organisme vivant se trouve dans l’échantillon de sol martien, il rejettera du gaz lorsqu’il recevra de de l’eau et/ou des nutriments), Labelled release (solution aqueuse avec 7 composés organiques marqués, expérience destinée à chercher de la vie qui les décompose en méthane ou gaz carbonique), Pyrolitic release (sans changer les conditions, on ajoute du gaz carbonique marqué et 120 heures plus tard, une pyrolyse décompose le résultat). Les deux premières ont des résultats clairement négatifs, les deux dernières des résultats positifs, mais attribués généralement à des réactions non biologiques : l'enthousiasme pour la vie martienne prend alors du plomb dans l’aile.

D’un autre côté, les responsables de la sonde Mars Express ont affirment avoir trouvé du méthane, un gaz qui se décompose rapidement sur Mars, distribué de façon non-uniforme à la surface tout comme la vapeur d’eau : l’origine en est encore incertaine (volcans, bactéries méthanogènes ?). D’autres expériences biologiques seront donc tentées à l’avenir, notamment avec la sonde européenne Exomars, pour obtenir des résultats définitifs tout en essayant d’éviter les ambiguïtés des mini-labos des Viking.

Les Martiens, héritiers des canaux du 19e siècle, n’ont cependant jamais vraiment déserté notre imagination. En 1976, ils ressurgissent de plus belle avec la découverte de « The Face ». Un étrange monticule en forme de tête humaine – c’est bien connu, les Martiens nous ressemblent. Sous la pression du public, la NASA a dû refaire récemment des images de la région à haute résolution... qui montrent une simple colline érodée! Cela n’empêche pas certains de parcourir les images de la planète rouge et d’y trouver des soucoupes volantes abandonnés, des pyramides-dortoirs, des forteresses abandonnées, et autres joyeusetés.


Les compagnons invisibles

Méthode des transits
transit.png
Figure 1 : Méthode du transit : en passant devant son étoile, la planète cache une partie du disque stellaire, provoquant une baisse de luminosité.
Crédit : OCA
Méthode astrométrique
wobble.png
Figure 2 : Méthode astrométrique : le mouvement de l’étoile est détecté par le changement de position de l’astre par rapport aux objets lointains. Déplacement du Soleil sous l'effet des mouvements planétaires (Jupiter et Saturne principalement), vu à une distance de 10 pc. L'amplitude de ce déplacement est de 500 microsecondes d'arc
Crédit : NASA
Méthode des vitesses radiales
exoplanet_spectro.gif
Figure 3 : L'étoile tourne autour du centre de gravité étoile-planète. La mesure du décalage des raies sombres visibles dans son spectre (l'effet Doppler) permet de calculer sa vitesse radiale. L'amplitude de cette variation informe sur la masse de la planète.
Crédit : Observatoire de Paris, ASM, E. Pécontal
vandekamp2.jpg
Figure 4 : P. Van de Kamp
Crédit : S. Cnudde

Puisque la théorie nébulaire prédit la présence de nombreux systèmes planétaires, les astronomes ont commencé à les chercher. Les fausses alarmes se multiplient, jusqu’à la dernière décennie du 20e siècle... La quête débuta par la découverte de compagnons invisibles. En 1782, des transits (figure 1) de tels objets sont proposés pour expliquer la variabilité d’Algol. (En réalité, les changements de luminosité de cette étoile résultent des éclipses de l’astre par un compagnon stellaire plus froid).

Cette idée fera son chemin, et en 1858 D. Lardner propose de chercher des objets planétaires par transits. Moins d'un siècle plus tard, D. Belorizky calcule que le transit d'un Jupiter fait une diminution de flux de 1%, ce qui est alors détectable, tandis qu'Otto Struve redécouvre la méthode et la promeut ! Dans les annees 1980, des astronomes proposent des missions spatiales permettant de chercher des transits d'exoplanètes, qui seront mises en oeuvre 20 ans plus tard avec CoROT et Kepler.

En 1844, F.W. Bessell (1784- 1846) en découvre pour Sirius et Procyon par la méthode astrométrique (figure 2).

En 1889, Edward Pickering (1846-1919) découvre des astres inconnus par la méthode des vitesses radiales (figure 3). Bien sûr, compagnon invisible, car noyé dans la lumière de l’astre principal, ne veut pas nécessairement dire compagnon planétaire – mais certains s’enthousiasment déjà, tels Simon Newcomb (1835-1909) qui déclare : « L’histoire de la Science n’offre pas de plus grande merveille que les découvertes de planètes invisibles qui sont en train de se produire. ».

En 1855, le capitaine W.S. Jacobs, féru d’astronomie, rapporte les «anomalies orbitales » de l’étoile binaire 70 Oph, détectées par la méthode astrométrique et probablement associées à une planète. Thomas Jefferson Jackson See (1866-1962), astronome fantasque, reprend l’idée en 1896 et assure que ces anomalies prouvent absolument l’existence d’une planète, de période égale à 36 ans. Un de ses confrères, F.R. Moulton, calcule néanmoins qu’un tel système à 3 corps serait instable, et donc qu’il ne peut exister de planète dans ce système. En 1905, W.W. Campbell et Hebert D. Curtis (1872-1942) calculent que le Soleil se déplace de seulement 0,03 km/s à cause des planètes : les instruments de l’époque ne permettent pas de détecter une amplitude aussi faible, et la recherche par la méthode des vitesses radiales est donc vouée à l’échec. Robert G. Aitken (1864-1951) insiste en 1938 : les planètes ont une masse trop faible par rapport au Soleil pour avoir un effet détectable par les instruments contemporains – il faut attendre.

Cependant, les astronomes sont impatients, et continuent malgré tout leurs recherches planétaires. La rotation des étoiles leur donne un argument supplémentaire. En effet, les étoiles chaudes et massives tournent rapidement (période de l’ordre d’heures ou de jours), alors que les plus froides ont une rotation bien plus lente (période de l’ordre du mois). Certains astronomes, dont Otto Struve (1897-1963), affirment que cette dichotomie est due à la présence de planètes autour des étoiles froides – planètes qui emportent une partie du moment cinétique (On prouvera plus tard que ce phénomène n’a rien à voir avec la presence de planètes) .

Galvanisés par ces premiers résultats, les scientifiques reprennent les recherches. Ainsi, en 1936, une première perturbation astrométrique avait été détectée pour l’étoile Ross 614 par Dirk Reuyl (1906-1972) : le compagnon était de nature stellaire, mais ce résultat ouvrait la porte à la détection de compagnons planétaires. En 1938, Erik Bertil Holmberg (1908-2000) rapporte un possible compagnon planétaire pour Procyon, mais le résultat fut rapidement infirmé – il y avait trop peu de mesures pour en tirer quelque chose de vraiment concluant. En 1943, les découvertes se multiplient: Kaj Strand rapporte la découverte de planètes pour 61 Cyg (confirmée par lui en 1957 et par des collègues en 1960), Reuyl et Holmberg font pareil pour 70 Oph (infirmé par Strand en 1952).

L’année suivante, c’est l’astronome Peter van de Kamp (1901-1995, figure 4), cousin de Reuyl, qui reprend le flambeau avec des compagnons pour l’étoile de Barnard et Lalande 21185 – comme il a un doute sur leur nature planétaire, il continue ses observations les années suivantes.

Au final, il examine plus de deux mille plaques photographiques, prises entre 1916 et 1919 ainsi qu’entre 1938 et 1962, de l’étoile de Barnard. Il trouve que cette étoile à grand mouvement propre n’a pas une trajectoire parfaitement rectiligne, mais qu’elle oscille plutôt autour d’une ligne droite, un mouvement perturbé selon lui par deux « Jupiter » qui gravitent autour de l’étoile. Dès 1973, George Gatewood et Heinrich Eichhorn mènent de nouvelles campagnes d’observations de l’objet mais ne remarquent rien de particulier ; un autre astronome, John Herschey, examine douze étoiles des plaques qui ont servi à van de Kamp et trouve que toutes présentent un étrange mouvement : le problème vient en fait du télescope, et plus particulièrement d’un changement de lentille ! Les astronomes persistent pourtant : en 1983, Robert S. Harrington (1942-1993) et V.V. Kallaraka rapportent que les étoiles van Biesbroeck 8 et 10 présentent des changements dans leurs mouvements propres dus à des compagnons très peu massifs... le résultat sera confirmé deux ans plus tard par interférométrie des tavelures mais en l’absence d’autres confirmations, la conclusion générale fut négative : une fausse alerte, encore une !


Recherches actives d'exoplanètes

Fomalhaut
fomalhaut_hst_lab800-1.jpg
Figure 1 : Le disque de Fomalhaut et la planète Fomalhaut b qui orbite sur le bord intérieur du disque.
Crédit : NASA

L’optimisme revient pourtant la même année avec la découverte de nuages de particules solides autour de Véga, β Pictoris et d’autres: il doit s’agir de disques protoplanétaires... une première étape est franchie, reste à trouver les planètes déjà formées. Il ne faudra plus attendre longtemps. En 1988, Bruce Campbell et deux collègues rapportent les résultats de six ans d’observations : 7 étoiles (sur les 16 étudiées) présentent des variations des vitesse peut-être dues à des compagnons de 1 à 9 masses de Jupiter et l’une d’entre elles possède un compagnon stellaire. Les auteurs proposent l’existence d’une planète pour γ Cep, leur meilleur candidat, mais ils restent prudents, vu les limitations de leur instrument et le fait qu’il pourrait s’agir non d’une planète mais bien d’une naine brune. Après des doutes sur cette découverte début des années 1992, elle fut confirmée en 2003... Rétrospectivement, il s’agit donc de la première observation d’exoplanète.

Peu apres, Latham et ses collègues proposent eux aussi une planète pour l'etoile HD114762. Après des doutes sur ces découvertes, elles furent confirmées... Rétrospectivement, il s’agit donc des premières détections d’exoplanètes.


les premières découvertes

51-Pegase
vr.gif
Figure 1 : La courbe des vitesses radiales de l'étoile 51-Peg.
Crédit : M. Mayor
Imagerie directe
imagerie.png
Figure 2 : J.J. See avait déjà affirmé en 1897 avoir détecté une demi-douzaine de planètes, et ce en imagerie directe ( !), autour de plusieurs étoiles proches (il ne précisera jamais lesquelles et l’on ne put dès lors ni infirmer ni confirmer ses allégations). En mai 1998, des utilisateurs du télescope spatial Hubble affirment avoir détecté directement, pour la première fois, une exoplanète. La « planète », de plusieurs fois la masse de Jupiter, serait située à 1500 UA de son étoile, une binaire qui l’aurait éjectée... irréfutable, disent ses découvreurs, car elle est encore reliée à son étoile par un « jet » (image de gauche). En 2000, on démontre qu’il s’agit en fait d’une étoile lointaine, très rougie. C’est finalement le VLT qui produira la première image, en 2004 (image de droite).
Crédit : NASA/ESO

51 Pegase

La première réussite reconnue de la méthode des vitesses radiales fut la découverte d’une planète autour de 51 Peg (figure 1) par les astronomes suisses Michel Mayor (1942-) et Didier Queloz (1966-), effectuée en 1995 avec un télescope français de... 1,93m de diamètre ! La méthode astrométrique a connu son premier succès plus récemment, en 2002, lorsque le télescope spatial Hubble a confirmé par cette méthode la présence d’une planète autour de l’étoile Gliese 876. Le premier transit exoplanétaire a quant à lui été repéré en 2000 pour l’étoile HD209458, dont le compagnon planétaire avait été découvert par la méthode des vitesses radiales.

Planètes autour d'un pulsar

Des planètes ont aussi été découvertes avec une méthode non imaginée au début du 20e siècle : le délai temporel des pulsars. La position d’un pulsar avec compagnon planétaire oscille autour de leur centre de masse commun : les signaux envoyés par le pulsar lorsqu’il est plus près de l’observateur parviendront plus rapidement à la Terre que ceux envoyés lorsque le pulsar est sur la partie éloignée de son orbite. Les temps d’arrivée des pulsations émises par l’astre oscillent donc également : leur analyse permet de déterminer les propriétés du compagnon. Utilisée par M. Bailes et ses collègues en 1991, cette mthode leur permet de trouver une exoplanète orbitant le pulsar PSR1829-10 – mais ils se rétractent six mois plus tard : ils n’avaient pas tenu compte de l’excentricité de l’orbite terrestre dans leurs calculs. L’année suivante, Aleksander Wolszcan (1946-) et Dale A. Frail repèrent plusieurs exoplanètes autour du pulsar PSR1257+12, ce qui sera confirmé en 1994. La découverte de planètes autour de pulsars peut sembler a priori sans intérêt pour le débat sur la vie extraterrestre (supernova et astre mort ne forment pas une combinaison très accueillante pour la vie), elle permet néanmoins un argument supplémentaire en faveur de l’universalité des systèmes planétaires : si des planètes peuvent se former dans des conditions aussi hostiles, alors elles le font sûrement partout !

Imagerie directe

Aujourd’hui, la technologie permet d’étudier les atmosphères d’exoplanètes, et l’on se prend à rêver de la détection de « biosignatures »... En attendant, l’imagerie directe fait ses premiers pas (figure 2) . En effet, la première image d’exoplanète fut obtenue avec le Very Large Telescope (8m ESO) en juillet 2004, une découverte confirmée en décembre 2005: il s’agit d’une planète de 4 à 6 la masse de Jupiter, de période 2450 ans, se trouvant à 55 UA d’une étoile naine de type M8 (0,025 la masse du Soleil) située à 220 années-lumière. Avec les projets de télescopes super-géants, d’aucuns espèrent pouvoir cartographier ces exoplanètes... La quête d’une seconde terre continue donc.


Vies et intelligences?

Auteur: Yaël Nazé

Search for Extraterrestrial Intelligence (SETI)

Avec la découverte du rayonnement radio et le développement des télécommunications qui s’ensuivit, la recherche de vie extraterrestre prit un autre tournant : et si on « écoutait » le ciel, à la recherche non de la simple vie, mais bien d’autres civilisations ?

L’idée est loin d’être neuve. Au tournant du siècle passé, Nikola Tesla (1856-1943), inventeur génial, pense utiliser l’induction pour amener l’énergie dans les maisons. Pour vérifier la faisabilité de son concept, il tente plusieurs expériences. Notamment, il construit un gigantesque transmetteur (une tour de 50 m de haut entourée de fil électrique). Une nuit de 1899, il enregistre des perturbations – son transmetteur était aussi un récepteur ! Il les prend pour une communication interplanétaire et il affirme en 1901 être le premier à établir une communication entre deux mondes différents – la réalité est plus prosaïque : selon toute vraisemblance, il s’agissait de l’émission radio d’éclairs lointains. Dans le même ordre d’idées, Guigliemo Marconi (1874-1937), responsable de la première émission transatlantique, imagine dès 1919 des communications basées sur le langage mathématique pour entrer en contact avec d’autres intelligences – il affirme même avoir reçu un signal inexpliqué et lointain en 1920 (il est le seul à l’avoir enregistré, ce qui suggère un problème quelconque). Avec ses collègues, il encourage les gens à écouter nos voisins martiens avec leur récepteur TSF lors de l’opposition Terre-Mars de 1924. On arrive même à mobiliser l’armée, qui diminuera ses émissions radio pour faciliter la détection de signaux martiens – un signal étrange est rapporté, sans confirmation extérieure. Hélas, tous ignoraient qu’à ces basses fréquences, les ondes radio sont arrêtées par l’ionosphère: aucune émission extraterrestre ne pouvait leur parvenir.

Dans un article pionnier paru en 1959, Giuseppe Cocconi (1914-) et Philip Morrisson (1915-2005) montrent que les communications interstellaires sont possibles. Les radiotélescopes ont alors atteint une sensibilité suffisante pour ce faire. Ils proposent de se focaliser sur des signaux à bande étroite et centrés sur 1420MHz, fréquence d’une raie d’hydrogène, élément le plus abondant dans l’Univers8 : en envoyant un message à cette fréquence, on est en effet certain qu’au moins un groupe de personnes écoute... les astronomes ! Ils reconnaissent toutefois que « La probabilité de succès est difficile à estimer, mais si l’on ne cherche jamais, les chances de réussir sont nulles. ». Aujourd’hui, on se focalise sur le point d’eau (water hole), une bande située entre les longueurs d’onde de 21,1 cm (H) et 17,6 cm (OH), car les deux composés associés forment l’eau, base de la vie...8 Aujourd’hui, on se focalise sur le point d’eau (water hole), une bande située entre les longueurs d’onde de 21,1 cm (H) et 17,6 cm (OH), car les deux composés associés forment l’eau, base de la vie...

Au même moment, un certain Frank Drake (1930-) entre en jeu. Il avait été frappé par un cours sur les exoplanètes donné par Struve et par la réception d’un signal (en fait, un parasite terrestre) alors qu’il observait les Pléiades: les signaux extraterrestres deviennent une passion chez lui. Indépendamment de Morrisson et Cocconi, il arrive à la même conclusion sur le choix de la fréquence et décide de tenter l’expérience en positionnant l’antenne de 26m de Green Bank vers deux étoiles proches (12 années-lumière) et de type solaire : τ Ceti et ε Eridani. Ce projet, baptisé Ozma, utilise l’antenne 6 heures par jour d’avril à juillet 1960, au total 200h d’observation, sans succès. Il en faut plus pour décourager Drake et ses collègues, qui fondent SETI (Search for Extraterrestrial Intelligence) et obtiennent des fonds de la NASA en 1992 – un an plus tard, le budget est annulé et ils doivent recourir au mécénat privé. Depuis, il y a eu le projet Phoenix (durant neuf ans, jusque mars 2004, il utilisa le radiotélescope d’Arecibo pendant 5% du temps disponible) ainsi que les projets SERENDIP et southern SERENDIP (utilisant la technique du piggyback - soit utiliser un instrument "collé" à un autre pour travailler en parallèle des projets « normaux » , cela permet d'obtenir un accès au ciel, mais sans pouvoir choisir la zone observée ni la durée d'observation).

Ces projets ont généré des milliards de données : comme les exobiologistes ne possédaient pas la puissance informatique pour les analyser, ils ont lancé en mai 1999 SETI@home, un économiseur d’écran utilisé par au moins 3 millions de personnes dans le monde. Cette idée a aujourd’hui été reprise par d’autres grands projets scientifiques.

En se focalisant sur le domaine radio, on avait oublié que d’autres communications sont possibles. Dans le domaine visible, il existe un signal typiquement artificiel : des impulsions laser. Depuis quelques années, certains scrutent le ciel à la recherche de ce type de signal. D’autres proposent de rechercher les émissions infrarouges associées à des sphères de Dyson (une sphère entourant une étoile-mère, permettant d’utiliser toute son énergie).

Jusqu’ici, aucun résultat probant n’a été obtenu. Dans les années 1960, deux sources radio variant avec une période de cent jours parurent suspectes... mais elles correspondaient en fait à un nouveau type de sources, les quasars. Peu après, des impulsions radio très régulières firent aussi penser à un signal LGM (Little Green Man) : hélas, il ne s’agissait « que » de la découverte des pulsars...

En 1977, un signal baptisé « Wow » avait bien focalisé l’attention, mais il ne s’est jamais reproduit: on pense aujourd’hui qu’il s’agissait probablement d’une interférence terrestre.

En y réfléchissant, les hypothétiques réceptions peuvent se séparer en trois grands types : on pourrait surprendre un signal local (ex : notre TV, les études radar d’objets du Système solaire, etc), un signal échangé entre deux civilisations ou entre une civilisation et sa colonie ou une de ses sondes spatiales (civilisations qui ignorent tout de nous), ou encore un signal délibérément envoyé pour se signaler aux autres mondes. Le seul problème, c’est la distance : plus la distance est grande, plus le signal est faible (loi en 1/d2 !) : avec notre technologie, nous pourrions capter un signal TV émis à une distance maximale d’une année- lumière ou un signal militaire puissant et à bande étroite dans les dix années-lumière environnantes (à cette distance, il y a déjà quelques étoiles) ; la situation est similaire pour les signaux de la deuxième catégorie (en imaginant que les extraterrestres soient capables d’émettre autant que nous).


Envoi de messages

Signal envoyé vers M13
signal-m13.png
Figure 1 : Signal envoyé vers M13
Crédit : Arecibo
plaque envoyée sur les sondes Pioneer
plaque-pioneer.gif
Figure 2 : Plaque gravée envoyée sur les condes Pioneer
Crédit : NASA
Disque envoyé sur les sondes Voyager
disque-voyager.jpg
Figure 3 : Disque gravé envoyé sur les sondes Voyager
Crédit : NASA

Écouter, c’est bien, mais cela suppose que quelqu’un émet. Le faisons-nous ? Pas vraiment... Nous émettons continuellement des signaux des deux premières catégories ci- dessus, mais les signaux délibérés ne sont pas encore monnaie courante. Au 19e siècle, Karl Gauss (1777-1855) aurait pourtant déjà proposé d’utiliser une centaine de miroirs d’un mètre de diamètre pour envoyer un signal lumineux dans l’espace. À la même époque, de nombreuses propositions ont été émises pour se signaler à nos collègues sélènes, vénusiens ou martiens: il suffirait de construire (à l’aide d’arbres, par exemple) des structures géométriques remarquables, par exemple un triangle rectangle flanqué de trois carrés signalerait notre connaissance du théorème de Pythagore.

En 1974, un signal radio a quand même été envoyé depuis Arecibo vers l’amas globulaire M13, situé à 21 000 années-lumière (figure 1) . Il s’agit d’un message de 1679 bits (0 et 1 étant classiquement représentés par deux fréquences différentes), soit 73 lignes et 23 colonnes (73 et 23 sont deux nombres premiers, une caractéristique mathématique que les intelligences extraterrestres apprécieront...). Répété durant trois minutes, il explique notamment d’où le message est venu – un coucou interstellaire qui parviendra dans 21000 ans à leurs destinataires. Précisons que l’envoi de ce message ne fit pas l’unanimité : l’astronome royal britannique, Martin Ryle (1918-1984), tenta d’en empêcher la diffusion par peur de «conséquences hostiles»... Son intervention relança le débat sur la gentillesse ou la méchanceté possibles des civilisations extraterrestres, mais les adhérents à la cause SETI tablent clairement sur la sagesse d’une civilisation avancée, qui a pu survivre aux développements technologiques.

Toujours au niveau pratique, certaines sondes spatiales ont été munies de messages. Les sondes Pioneer (1972/1973) recèlent une plaque gravée (figure 2) : elles ont mis 21 mois pour rejoindre Jupiter, et si elles étaient lancées vers l’étoile la plus proche, elles l’atteindraient en 115 000 ans – Pioneer 10 s’approchera en fait d’Aldébaran dans deux millions d’années... Les messages des sondes Voyager (1977) sont plus élaborés (figure 3): ces vaisseaux renferment un disque comportant des images et des sons (des vœux multilingues, de la musique, des bruits naturels, etc.). Actuellement, ces sondes se trouvent à 15 milliards de kilomètres du Soleil ; leurs signaux, lancés par un émetteur de seulement 320W, mettent 16h à nous parvenir. Une chose est sûre : s’ils arrivent à déchiffrer ces messages, les extraterrestres sont effectivement intelligents !


Equation de Drake

En 1961, l’astronome Frank Drake propose à dix collègues de participer à la première conférence SETI. Au moment de fixer l’agenda, il élabore une équation devenue célèbre : N=T_e*p_pl*n_e*p_v*p_i*p_c*L Les différents termes sont :

Le résultat est que N vaut alors 12 à 50 (Drake était plus optimiste, et simplifiait son équation en N=L). Les plus pessimistes proposent plutôt N=1 (le seul exemple, c’est nous). Parfois surnommée la paramétrisation de l’ignorance, l’équation de Drake possède néanmoins un avantage réel : poser correctement le problème, même si l’on est actuellement incapable de le résoudre, et le découper en ses constituantes, plus « faciles » à envisager.

Calcul de l'équation de Drake


Paradoxe de Fermi

Enrico Fermi (1901-1954) résuma la situation en 1950, durant un dîner à Los Alamos: «L’Univers contient des milliards d’étoiles. Beaucoup de ces étoiles ont des planètes, où se trouvent de l’eau liquide et une atmosphère. Des composés organiques y sont synthétisés ; ils s’assemblent pour former des systèmes autoreproducteurs. L’être vivant le plus simple évolue par sélection naturelle, se complexifie jusqu’à donner des créatures pensantes. La civilisation, la science et la technologie suivent. Ces individus voyagent vers d’autres planètes et d’autres étoiles, et finissent par coloniser toute la Galaxie. Des gens aussi merveilleusement évolués sont évidemment attirés par un endroit aussi beau que la Terre. Alors, si cela s’est bien produit ainsi, ils ont dû débarquer sur Terre. Where is everybody ? »

S’il existe une civilisation galactique, elle devrait avoir colonisé toute la galaxie, soit via des robots, soit personnellement. Comme on ne voit rien, c’est qu’il n’y a personne... Nous sommes donc seuls. C’est l’hypothèse de la Terre rare. En effet, nous serions issus d’une successions de hasards : sans un Jupiter pour dévier les mortels astéroïdes, sans un satellite gros comme la Lune pour stabiliser l’axe de rotation (or on sait aujourd’hui que cette Lune provient d’un gros impact), sans un impact important qui a éliminé les dinosaures et permis aux mammifères, donc finalement nous, de proliférer (or les impacts se font au hasard), nous ne serions pas là... Ces considérations rejoignent celles de certains biologistes, évoquées plus haut.

Le paradoxe de Fermi, comme on le surnomme, peut toutefois se résoudre de deux autres manières. Tout d’abord, il existe peut-être d’autres civilisations, mais elles n’ont pas colonisé la Galaxie : le voyage interstellaire est peut-être difficile voire impossible (pour des raisons techniques ou sociologiques – on a mieux à faire, c’est trop cher ou trop dangereux) ; le caractère d’explorateur des humains est peut-être une exception dans l’Univers ; ou une civilisation avancée ne peut éviter l’auto-destruction. Il est également possible, tout simplement, que ces civilisations n’ont pas eu le temps de s’étendre car certains estiment à une dizaine de milliards d’années le temps nécessaire pour coloniser l’ensemble de la Galaxie – les ETs ne sont pas là, mais ils sont en chemin. Cependant, on peut également imaginer qu’il existe une civilisation galactique colonisatrice, mais que nous ne nous en rendons pas compte : nous avons peut-être peu d’intérêt pour eux (s’intéresse-t-on à une fourmi ?) ; ou nous sommes peut-être surveillés sans interférence (hypothèse du « zoo » galactique).


Imagination populaire

OVNIS
Kenneth_Arnold.gif
Figure 1 : Les OVNIs sont souvent associés aux « soucoupes volantes ». Ce terme provient d’une interview avec l’homme d’affaires Kenneth Arnold qui en 1947 rapporta avoir vu neuf objets alors qu’il pilotait son avion privé. Il les décrivit comme des « disques volant comme une soucoupe si vous la lancez de l’autre côté de l’eau » – le terme de soucoupe s’appliquait donc à décrire le mouvement des objets, et non leur forme, mais le journal titra le lendemain en première page « flying saucers ».. l’ère des soucoupes volantes venait de commencer.
Crédit : K.A.

Cela fait plus d’un siècle que les extraterrestres ont fait leur apparition dans la prose et la poésie : en fait, depuis Fontenelle, les idées extraterrestres percolent toutes les couches de la société et y implantent l’idée d’une vie ailleurs. Ainsi, la science-fiction, outre ses aspects divertissants, joue également un rôle plus fondamental : elle permet au public de s’habituer à l’idée extraterrestre – certains assurent même que la découverte de vie ailleurs, sur Mars par exemple, ou la réception d’un signal étranger auraient certes un grand retentissement le jour même, mais seraient vite oubliées dans la société hyper-médiatisée actuelle. Du point de vue sociologique, espoirs et craintes entourent l’idée extraterrestre : conduira-t-elle à une plus grande unité (front commun contre les aliens ou pour la préservation de la Terre si nous sommes uniques) ou à une destruction de la société si la civilisation de l’autre est très avancée (scientifiques dépassés, lien de dépendance) ? La question est en tout cas posée, et les maîtres de SETI ont jugé nécessaire de publier un protocole détaillé sur la manière d’agir en cas de réception avérée de signal extraterrestre.

Bien sûr, d’aucuns assurent que le contact s’est déjà produit. Des « preuves » de leur ancien passage peuvent être trouvées dans les lignes de Nazca au Pérou (des pistes d’atterrissage pour extraterrestres), les représentations d’astronautes extraterrestres trouvés dans les peintures de Bosch ou les gravures des tombes de Palenque (Mexique), le déplacement des moai de l’Île de Pâques entre leur carrière (où ils auraient été découpés au laser) et leur emplacement actuel, la vision d’objets cylindriques dans le ciel de Nuremberg le 14 avril 1561, le grand complexe astronomique de Stonehenge, etc. Toutes ces considérations assez folkloriques ont pu être écartées sans grand problème.

Depuis la seconde guerre mondiale, les extraterrestres reviennent en force, et pas seulement au cinéma ou en littérature : cette fois, il s’agit d’OVNIs. En pleine guerre froide, les Américains ont craint qu’il ne s’agisse d’engins soviétiques... Ils ont mis sur pied plusieurs commissions de manière à évaluer la menace pour la sécurité nationale (projet Sign fin 1948, projet Grudge en 1949, projet Blue Book en 1956, rapport Condon fin des années 1960). Leurs conclusions sont rassurantes : il n’existe aucune preuve qu’il s’agisse d’un ennemi (sous-entendu à l’époque, l’URSS), d’une manifestation interplanétaire ou d’un danger quelconque pour le pays ; d’ailleurs, 90% des OVNIs s’expliquent de manière tout à fait naturelle. Après tout, on ne compte plus les phénomènes célestes : débris spatiaux qui se désintègrent dans l’atmosphère, foudre en boule, vols d’oiseaux, voire tests d’engins « secrets » – même le lever de Vénus ou de la Lune effraie parfois les Terriens ayant perdu le contact avec le ciel ! Il faut toutefois avouer que l’évaluation des grandeurs de phénomènes célestes n’est pas évidente : bien peu d’entre nous ont conscience que la Lune a la même taille au zénith et à l’horizon. Les erreurs sont donc fréquentes tant sur la taille et la distance que le mouvement d’un objet et sa direction : la plupart des témoignages ne sont donc pas fiables – même s’ils proviennent d’un pandore assermenté. De plus, nombre de citoyens modernes ont perdu le contact avec la nature, et ne connaissent plus les phénomènes célestes, même les plus courants.

Ceci dit, 90% n’est pas 100% : il reste une partie de phénomènes inexpliqués... par la science actuelle : est-elle la meilleure possible ? On peut raisonnablement en douter (dans le cas contraire, il faudrait arrêter de financer la recherche !). Il reste donc encore à prouver que ces cas inexpliqués sont l’œuvre d’extraterrestres : par analogie, si la police de New York réussit à résoudre 90% des crimes de la ville (ce sont des humains ayant attaqué d’autres humains), cela ne veut pas dire que les 10% restants sont forcément commis par des aliens désœuvrés...