La condition la plus restrictive pour qu'une exoplanète soit dans la zone habitable - et donc potentiellement habitée par une vie détectable- est la présence d'eau liquide stable à sa surface. Notre expérience dans le Système Solaire / grâce aux premières observations d'exoplanètes montre qu'il existe une grande diversité de planètes. Pourtant, parmi cette diversité, la seule planète dont nous savons qu'elle possède de l'eau liquide stable depuis plus de 4 milliards d'années à sa surface est la Terre. Existe-t-il des planètes de configurations bien différentes de la Terre mais qui pourtant sont capables d'avoir de l'eau liquide stable à leur surface ? Si oui, à quoi ressemblent de telles exoplanètes ? Autour de quelles étoiles peut-on les trouver ? Quels gaz composent leur atmosphère ? ...
Flux lumineux reçu ; Composition, Taille et Masse de la planète ; Composition et Masse de l'atmosphère ; Paramètres orbitaux (excentricité, obliquité ...) de la planète ; Vitesse de rotation ... Ce sont tout autant de paramètres capables de favoriser ou non la présence d'eau stable à la surface d'une planète. Il est extrêmement difficile de prédire à l'avance quel genre d'exoplanètes nous allons découvrir dans les années à venir. Il est donc essentiel de comprendre, parmi tout ce panel de paramètres, quels sont ceux qui peuvent permettre à une planète ou non d'avoir de l'eau liquide stable et donc d'héberger de la vie.
Si vous connaissez par exemple la masse d'une planète et la distance qui la sépare de son étoile, il est possible de spéculer sur la nature et l'épaisseur de son atmosphère, élèments essentiels pour savoir si la planète peut potentiellement être habitable.
Imaginez une planète dans la Zone Habitable de son étoile, mais dont la masse serait 20 fois plus faible que celle de la Terre, comme Mercure par exemple. Dans ce cas, la planète n'exercera pas une gravité suffisante pour pouvoir garder une atmosphère capable de maintenir de l'eau liquide à sa surface.
Mais la masse d'une planète et sa distance à l'étoile ne sont pas des conditions suffisantes pour étudier son habitabilité. Il existe un grand nombre de configurations dans lesquelles une planète pourrait être habitable ... comme les planètes en rotation synchrone ? les planètes ayant une atmosphère d'hydrogène ? Les planètes ayant un flux géothermique très élevé ? ... Ce sont tout autant de candidats aux caractéristiques exotiques mais dont il faut explorer les possibilités ...
Les processus physiques qui entrent en jeu dans l'évolution du climat d'une planète sont nombreux. En voici une liste non-exhaustive :
La manière la plus réaliste de tenir compte de tous ces phénomènes physiques est d'utiliser un modèle de climat. Pour plus d'informations, veuillez vous reporter au cours sur les Modèles de Climat.
Dans un modèle Radiatif-Convectif, ou Modèle à 1 dimension, on représente la totalité de l'atmosphère d'une planète par une unique colonne composée d'un nombre discret de couches atmosphériques. Dans un GCM (Global Climate Model), ou Modèle à 3 dimensions, l'atmosphère est discrétisée selon les trois dimensions de l'espace.
Les modèles 3D ont l'avantage d'être plus complets et réalistes. Ils ont cependant le défaut d'être rapidement limités (par comparaison aux modèles 1D) par la puissance de calcul requis.
Les modèles 1D sont plutôt fiables lorsqu'il s'agît de modéliser des planètes où la température de surface varie peu d'un point à un autre. C'est le cas des planètes avec une atmosphère très dense et/ou ayant une rotation suffisamment rapide. Dans le cas où il existe un contraste de température marqué entre deux points d'une même planète, le modèle 1D n'est plus représentatif de la planète. C'est notamment le cas des planètes en rotation synchrone, qui sont irradiées d'un côté (haute température) et pas de l'autre (basse température).
Prenons le cas d'une planète en rotation synchrone, sans atmosphère, en tout point à l'équilibre thermique, et avec un albédo de surface constant A. Et faisons l'hypothèse très simpliste qu'une face reçoit en tout point un flux solaire constant alors qu'une autre ne reçoit pas du tout de flux. Soit le flux moyen reçu sur l'ensemble de la surface. Le bilan radiatif 1D donne : , soit , avec la température moyenne d'équilibre de la planète (1D).
La planète est composée de deux faces d'aires égales : une éclairée et une autre non. Pour 50% de la planète, du côté de la face cachée, . Pour les 50% restants, car le côté éclairé de la planète reçoit un flux lumineux deux fois plus élevé que le flux moyen reçu sur l'ensemble de la surface, . La température moyenne d'équilibre de la planète (3D) vaut donc .
En bref, ~ ! Pour ce cas particulier, l'erreur est considérable. En fait, de manière plus générale, plus l'écart-type sur la température d'équilibre d'une planète est grand, plus l'erreur commise sur le calcul de sa température de surface par un modèle 1D sera grande.
La limite intérieure de la Zone Habitable ou limite chaude de l'Habitabilité correspond à la distance orbitale à partir de laquelle toute l'eau liquide à la surface d'une planète est vaporisée. Quand le flux lumineux reçu par une planète augmente, l'évaporation de ses océans augmente aussi. La vapeur d'eau ainsi formée étant un puissant gaz à effet de serre, la température à la surface de la planète va s'élever, entrainant une augmentation de l'évaporation, et ainsi de suite ...
Prenez la Terre et rapprochez là progressivement du Soleil. Au fur et à mesure, sa température de surface et la quantité de vapeur d'eau dans son atmosphère vont augmenter. Ainsi, l'émission thermique de la Terre vers l'espace va augmenter. Jusque là, la Terre reste en état d'équilibre et à une valeur de flux solaire reçu va correspondre une température d'équilibre.
Mais à partir d'un certain flux solaire (i.e., une certaine distance à l'étoile centrale), la surface de la Terre entre dans un état hors-équilibre. La quantité de vapeur d'eau est telle que l’atmosphère devient totalement opaque dans le domaine de l'infrarouge. Le rayonnement infrarouge ne peut plus s’échapper vers l’espace et par conséquent la surface de la Terre n'est plus capable de se refroidir. Elle va donc se réchauffer continument jusqu'à ce que celle ci soit de nouveau capable de se refroidir par émission thermique dans le proche infrarouge - visible. C'est ce qui arrive une fois que la surface atteint une température de ~ 1800 Kelvins. A cette température, la Terre est si chaude qu'elle émet dans le proche infrarouge - visible, gamme de longueur d'onde qui correspond à une "fenêtre" dans le spectre d'absorption de la vapeur d'eau.
L'estimation la plus récente de la limite intérieure de la Zone Habitable, et via la mécanisme de Runaway Greenhouse, est de 0.95 A.U. et a été établie à partir de Modèles 3D (GCM).
Alors que les modèles 1D faisaient l'hypothèse que l'atmosphère de la Terre, en se rapprochant du Soleil, serait très vite saturée en vapeur d'eau ... les modèles 3D ont mis en évidence la présence de région non-saturées en eau au niveau des tropiques, augmentant ainsi l'émission thermique de ces régions, et repoussant la limite chaude de l'Habitabilité vers l'intérieur.
Difficulté : ☆☆☆ Temps : 1 heure
Si la Terre entre en Runaway Greenhouse, quelle est la pression atmosphérique maximale qu'elle peut atteindre ?
Dans le cas de la Terre, quel est la différence d'énergie (en Joules et en ordre de grandeur) entre les deux états d'équilibre correspondant à 1) l'entrée en Runaway Greenhouse et à 2) la sortie du Runaway Greenhouse ? On fera d'abord l'hypothèse que les échanges entre l'atmosphère/les océans et le sous-sol sont nuls.
Inévitablement, la luminosité du Soleil augmente avec le temps. Les modèles standards d'évolution stellaire indiquent que la luminosité du Soleil évolue comme suit : , avec l'âge relatif du Soleil par rapport à aujourd'hui, l'âge du Soleil ( milliards d'années) et la luminosité actuelle du Soleil. Estimez 1) le temps nécessaire pour initier le mécanisme de Runaway Greenhouse sur Terre à partir d'aujourd'hui, et 2) le temps nécessaire pour atteindre le premier état d'équilibre en sortie du Runaway Greenhouse. On fera l'hypothèse que l'albédo planétaire de la Terre vaut (dans ces conditions) .
Recalculez maintenant l'énergie () nécessaire pour passer d'un état d'équilibre du Runaway Greenhouse à l'autre en prenant en compte cette fois-ci le chauffage du sous-sol. Calculez alors le nouveau temps nécessaire pour sortir du Runaway Greenhouse. On pourra utiliser le profil de température fourni ci-joint.
Prenez à nouveau la Terre et rapprochez là progressivement du Soleil. À 1 Unité Astronomique, c'est la Terre actuelle. À 0.95 Unité Astronomique, le climat de la Terre s'emballe vers un état de "Runaway Greenhouse". Mais avant d'atteindre cet état, la Terre passe progressivement d'états d'équilibre en états d'équilibre de plus en plus chauds et humides. Les hautes couches de l'atmosphère sont alors elles aussi de plus en plus chaudes et humides. Le flux extrême UV en provenance du Soleil peut alors atteindre les molécules d'eau et les casser en atomes d'oxygène et hydrogène. Ces derniers sont légers et peuvent facilement être éjectés dans l'espace.
Par ce mécanisme, la Terre pourrait progressivement perdre tout l'hydrogène de son atmosphère et donc la totalité de son réservoir d'eau.
Pour savoir à quelle vitesse la Terre perdrait l'hydrogène de son atmosphère, il est important d'identifier le processus limitant de l'échappement atmosphérique ... 1. L'eau s'évapore des océans dans la couche la plus basse de l'atmosphère. Cette eau est très rapidement mélangée dans les couches basses de l'atmosphère. 2. Les molécules d'eau sont transportées plus lentement vers les hautes couches de l'atmosphère. 3. Dans les hautes couches de l'atmosphère (jusqu'à l'exosphère), les molécules d'eau sont photodissociées pour donner de l'hydrogène qui, léger, va rapidement s'échapper vers l'espace.
En fonction de la quantité d'eau injectée dans la stratosphère, le processus limitant va être ou bien la diffusion ou bien la photodissociation (dans ce cas, la quantité limitante est le flux incident d'UV utilisé pour la photodissociation).
Il est pour l'instant difficile de savoir si la Terre deviendra un jour (à mesure que la luminosité solaire augmente) inhabitable via le mécanisme d'emballement de l'effet de serre ou bien via la perte de son eau dans l'espace. Le taux d'échappement de l'hydrogène est principalement fonction de la quantité d'eau présente dans les hautes couches (stratosphère) de l'atmosphère ; pourtant, les différents modèles de climat (1D et 3D) à la pointe de la recherche dans ce domaine montrent des écarts considérables dans leurs estimations du contenu en vapeur d'eau dans la haute atmosphère terrestre ...
La série d'exercices ci-dessous propose justement de comparer les résultats de deux modèles de climats différents (non représentatifs).
Difficulté : ☆☆ Temps : 15 minutes
Imaginons une planète habitable sur laquelle le mécanisme de Moist Greenhouse serait dominant. Etablir la relation liant la durée de vie de ses océans et le taux d'échappement de son hydrogène vers l'espace.
Prenons le cas de la Terre. En considérant uniquement le mécanisme de Moist Greenhouse, donnez une limite supérieure du temps de vie des océans de la Terre en considérant les résultats du modèle 1D.
Donnez maintenant une limite inférieure du temps de vie des océans de la Terre en considérant les résultats du modèle 3D.
La limite froide de l'Habitabilité en surface, ou limite extérieure de la Zone Habitable, correspond à la distance orbitale maximale jusqu'à laquelle une planète peut garder de l'eau liquide à sa surface.
Pour pouvoir estimer cette limite, il s'agit de trouver l'atmosphère la plus efficace pour permettre à une planète de garder son eau liquide aussi loin que possible de son étoile. Il s'agit donc de trouver le meilleur cocktail de gaz à effets de serre, en quantité et en proportion, et qui soit physiquement crédible.
Un gaz à effet de serre est un gaz capable d'absorber une fraction importante du flux thermique émis par la surface d'une planète, tout en laissant passer la majorité de la lumière en provenance de son étoile (ultraviolet, visible, et proche infrarouge). Cela a pour effet de réchauffer la surface de la planète. Sur Terre, par exemple, les gaz à effet de serre présents dans l'atmosphère réchauffent en moyenne la surface de ~ 33°C.
Il existe de nombreux gaz à effet de serre (CO2,H2O,CH4,NH3, ...), mais seulement certains d'entre eux sont susceptibles d'être réellement présents sur une planète habitable. Les deux gaz les plus réalistes d'une atmosphère de planète habitable sont le dioxyde de carbone et la vapeur d'eau. D'autres gaz comme par exemple l'ammoniac (NH3) et le méthane (CH4) sont envisageables dans une atmosphère abondantes en réducteurs (H2,CO, ...) mais sont rapidement photodissociés par le flux UV s'ils n'en sont pas protégés ou ne sont pas renouvelés.
En fait, il se trouve que l'une des manières les plus efficaces (et aussi plausibles) pour réchauffer une planète est d'avoir une atmosphère épaisse de CO2 !
Le problème, c'est qu'on ne peut pas réchauffer autant qu'on veut une planète en lui ajoutant des gaz à effet de serre à l'infini ... Au delà d'une certaine quantité, alors que l'opacité des gaz à effet de serre dans l'infrarouge commence à saturer, la proportion de rayonnement stellaire absorbé diminue aussi à cause de la diffusion Rayleigh qui tend à réfléchir une partie des photons incident vers l'espace. Si on considère une planète composée d'une atmosphère de CO2 (sans nuages), la distance (du Soleil actuel) la plus lointaine à laquelle une telle planète peut garder de l'eau liquide sera de 1,67 Unités Astronomiques. Cette distance correspond à la limite extérieure de la Zone Habitable et a été établie pour une pression de 8 bars de CO2 (en supposant une gravité terrestre).
Les nuages ont un rôle important à jouer pour la limite extérieure de la Zone Habitable. Les nuages reflètent une partie de la lumière stellaire incidente, mais peuvent aussi contribuer à l'effet de serre en absorbant le rayonnement venu de la surface et de la basse atmosphère pour rayonner à une température de brillance plus froide. Dans certains cas (voir ci-dessous) ils peuvent même réfléchir le rayonnement thermique de la surface. Ils peuvent donc contribuer positivement comme négativement, selon les situations, au bilan radiatif de la planète considérée.
Il se trouve que lorsque des nuages de CO2 se forment dans une atmosphère épaisse de CO2, la température de surface se réchauffe davantage, repoussant plus loin encore la limite extérieure de la Zone Habitable. Cela est dû à la diffusion du rayonnement thermique par les particules de glace qui composent les nuages de CO2, et qui indirectement réfléchissent vers la surface le rayonnement thermique infrarouge. En prenant en compte ce procédé, la limite froide de l'Habitabilité peut être repoussée jusqu'à 2.5 Unités Astronomiques ! (en supposant une couverture nuageuse totale).
Plus une étoile a une faible masse, plus sa luminosité sera petite, et donc plus la Zone Habitable sera proche de cette étoile. Les Naines M, qui sont les étoiles les moins massives de la Séquence Principale (masse comprise entre 0,075 et 0,4 masse solaire) ont une Zone Habitable de 5 à 50 fois plus proche que celle autour du Soleil.
Plus une planète est proche de son étoile, plus les forces de marée exercées par son étoile sur elle vont s'accentuer.
Lorsqu'une planète orbite autour de son étoile, la force de gravité (qui diminue avec la distance) ressentie par la planète n'est pas la même en tout point. La partie de la planète la plus proche de son étoile est plus attirée par l'étoile que la partie lointaine. En conséquence, l'étoile déforme la planète et crée un renflement dans sa direction (et dans la direction opposée).
Si la planète tourne plus rapidement sur elle-même que sa révolution autour de son étoile, ce renflement va se décaler légèrement par rapport à l'axe Etoile-Planète. La planète étant un corps non-élastique, il faut en effet un laps de temps non-nul pour que le renflement revienne dans la direction de l'étoile.
En conséquence, il se crée un décalage angulaire entre le renflement et la direction de l'étoile. Ceci a pour effet de créer un couple de rappel opposé au sens de rotation de la planète : la planète freine. Cet effet va durer tant que la vitesse de rotation de la planète est supérieure à sa vitesse de révolution. Dans cette situation, l'état d'équilibre le plus stable est la rotation synchrone.
En fonction des propriétés de la planète et de son étoile, le temps qu'il faut pour qu'une planète se synchronise avec son étoile est très variable. On estime que avec la vitesse de rotation initiale de la planète, la distance Planète-Etoile, le moment d'inertie de la planète ( pour une sphère, on a par exemple ), la constante gravitationnelle, et respectivement la masse de la planète et de l'étoile et le rayon de la planète. et sont deux coefficients qui caractérisent la réponse de la planète aux forces de marée.
Finalement, on retiendra que . On a avec le flux reçu par la planète et la luminosité de la planète. On choisit le flux moyen reçu par une planète habitable, indépendant de la planète et de l'étoile. Donc on a . Pour des étoiles de la Séquence Principale, on a de plus la relation Masse-Luminosité suivante : .
Bref, . Par exemple, en considérant ce mécanisme, une planète dans la Zone Habitable d'une Naine M de 0,2 masses solaires se synchronisera ~ fois plus rapidement qu'une planète, comme la Terre, dans la Zone Habitable du Soleil.
Note : Les forces de marée gravitationnelle peuvent être à l'origine de deux effets supplémentaires : 1. circulariser les orbites (les planètes en moyenne trop proches de leur étoile ont une excentricité qui diminue avec le temps) et 2. redresser l'obliquité (les planètes trop proches de leur étoile ont une obliquité qui tend vers 0).
En fait, lorsque la planête est entourée d'une atmosphère sufisamment épaisse, il existe une autre force de marée qui pourrait retarder voire empêcher la synchronisation d'une planète : la force de marée thermique.
Prenez une planète avec une atmosphère épaisse, comme Vénus par exemple. Lorsque le Soleil chauffe la zone subsolaire de cette planète, l'atmosphère s'y réchauffe et se dilate. La pression augmente en altitude. Pour équilibrer les forces de pression atmosphérique, une partie de la masse de l'atmosphère est redistribuée vers le coté nuit, créant cette fois-ci un renflement dans la direction perpendiculaire à la direction du Soleil.
Si la rotation d'une telle planète est plus rapide que sa révolution autour de son étoile , on aura un décalage angulaire entre l'orientation du renflement et la perpendiculaire à la direction de l'étoile. Si est inférieur à 180°, le renflement va provoquer un couple accélérateur du même sens que la rotation de la planète.
Si ce couple est suffisamment important, la période de rotation de la planète va converger vers un état d'équilibre différent de la rotation synchrone, où couples de marée gravitationnel et thermique se compensent. C'est par exemple ce qui est arrivé à Vénus.
Il y a finalement deux critères majeurs pour savoir si une planète habitable va finir en rotation synchrone ou non. Plus la masse de son étoile est faible, et moins son atmosphère est épaisse, plus les chances sont grandes pour que la planète entre (et rapidement) en rotation synchrone.
Une planète en rotation synchrone autour de son étoile lui montre toujours la même face. Une telle planète possède une face fortement irradiée, mais une face et deux pôles non éclairés.
Prenons le cas d'une planète en rotation synchrone qui n'aurait ni océans, ni atmosphère. Sur une telle planète, les échanges de chaleur se font très mal d'un point à l'autre de la planète. Du coup, la différence de température entre la face irradiée et la face cachée sera extrême. Du côté caché, la température de surface dépendra essentiellement du flux géothermique . Soit . Alors que du côté irradié, et notamment au niveau du point substellaire, , avec le flux stellaire au point substellaire, l'angle zénithal et l'albédo de la surface.
Rajoutez maintenant à cette planète une atmosphère et des océans. Le transport de chaleur assuré par l'atmosphère et les océans va alors réduire les écarts de température entre les deux faces ...
Si vous rapprochez la Terre du Soleil et que vous dépassez la limite de 0.95 UA, la Terre va partir en "Runaway Greenhouse" et ne sera plus habitable.
Prenez maintenant une planète similaire à la Terre mais orbitant en rotation synchrone autour d'une étoile similaire au Soleil. Si vous dépassez la limite de 0.95 UA, une telle planète peut rester habitable !
À mesure que cette planète se rapproche de son étoile, le flux lumineux reçu au point substellaire augmente. Ceci crée une zone de forte convection à l'origine de la formation de nuages épais très réfléchissants. La couverture nuageuse de la face irradiée peut atteindre jusqu'à 80%. Plus le flux stellaire augmente, plus ce mécanisme est efficace, plus l'albédo planétaire augmente. Conclusion : La limite intérieure de la Zone Habitable est largement repoussée vers l'intérieur.
Note : Lorsque ce mécanisme entre en jeu, la quantité de vapeur d'eau injectée dans la stratosphère est fortement augmentée, ce qui soulève la question de l'échappement atmosphérique de l'hydrogène.
Si vous déplacez cette planète beaucoup trop près de son étoile, le mécanisme décrit précédemment n'est plus suffisant pour assurer son habitabilité. En fonction de son état initial, la planète peut alors diverger vers deux états possibles et pourtant bien différents : 1. Elle peut entrer en Runaway Greenhouse. 2. Toute l'eau de la planète peut se retrouver piégée du côté froid. Cette "bistabilité" résulte de la compétition entre d'un côté le taux d'évaporation, côté jour, et de l'autre l'efficacité du transport/le taux de condensation de la vapeur d'eau dans les pièges froids, côté nuit.
1. Si la quantité de vapeur d'eau initiale dans l'atmosphère est suffisante, alors l'effet de serre de la vapeur d'eau va s'emballer en évaporant la totalité du réservoir d'eau de la planète. C'est l'état classique du "Runaway Greenhouse". 2. Mais si la quantité initiale de vapeur d'eau dans l'atmosphère est insuffisante, l'évaporation de l'eau liquide côté jour n'est pas suffisamment intense pour dépasser le taux de condensation côté nuit. Le seul état d'équilibre alors possible arrive lorsque la totalité de l'eau côté jour s'est évaporée pour finir, sous forme de glace, côté nuit.
Quand une planète a une orbite trop proche de son étoile, et par l'action de forces de marées, elle finit rapidement par avoir une orbite synchrone autour de son étoile. Les planètes "froides" de la Zone Habitable sont à priori moins concernées par cet effet, puisqu'elles sont beaucoup plus éloignées de leur étoile que les planètes "chaudes" de la Zone Habitable. Dans le cas du Soleil par exemple, une planète qui se trouverait à la limite intérieure de la Zone Habitable (0.95 UA) peut se synchroniser ~ 30 fois plus rapidement qu'une planète située au niveau de la limite extérieure (1.67 UA). Résultat : Une planète froide comme Mars n'a aucune chance d'être un jour en rotation synchrone car le temps que cela lui prendrait est bien supérieur à la durée de vie du Soleil.
Pourtant, autour d'étoiles de faible masse, la Zone Habitable est beaucoup plus rapprochée de l'étoile. Et les planètes "froides" de la Zone Habitable de telles étoiles sont susceptibles elles aussi d'entrer en rotation synchrone.
Les planètes en rotation synchrone ont très certainement, sous l'effet des forces de marée gravitationnelle, une obliquité très redressée (proche de , comme Mercure). Résultat : de telles planètes peuvent posséder plusieurs points froids (au niveau des pôles mais surtout au niveau de la face non éclairée). Pour qu'une planète "froide" (peu irradiée par son étoile) soit capable de garder de l'eau liquide à sa surface, il faut déjà qu'elle soit capable de conserver son atmosphère à l'état gazeux. En particulier, une planète en rotation synchrone dont l'atmosphère (composée par exemple de ...) serait trop peu épaisse pourrait condenser l'ensemble de ses espèces gazeuses. De l'espèce la moins volatile à l'espèce la plus volatile, la vapeur d'eau va d'abord se condenser du côté froid, puis au tour du et enfin ... même du !!! Une telle planète n'est pas capable de conserver son atmosphère sous forme gazeuse et ne peut donc pas être habitable (de classe I).
Lorsque l'atmosphère d'une planète en rotation synchrone s'épaissit (par exemple en injectant du ) :
Autour d'une étoile type solaire, le premier point aurait un effet très réduit car la diffusion Rayleigh augmente l'albédo planétaire à mesure que la pression atmosphérique augmente. Mais c'est essentiellement autour des étoiles M (de faible masse) que des planètes "froides" peuvent entrer en rotation synchrone. Aux longueurs d'onde d'émission d'une telle étoile, la diffusion Rayleigh a une influence très limitée, et il est possible d'augmenter très fortement l'effet de serre d'une atmosphère en atteignant une pression atmosphérique très élevée.
Ainsi, si la planète possède une pression atmosphérique suffisante, l'effondrement de l'atmosphère peut être évité. Si c'est le cas, la planète est alors soumise au principe de Maximum Greenhouse correspondant à la distance orbitale à laquelle elle se trouve. NB : On peut noter que la présence d'un océan (contribuant très fortement au transport de chaleur) à la surface d'une telle planète peut permettre d'abaisser la pression critique à laquelle l'atmosphère condense.
A l'heure actuelle, on considère que les étoiles de faible masse - appelées aussi Naines M - sont les meilleurs candidats pour héberger des planètes porteuses de vie. D'abord, elles sont plus nombreuses que les étoiles d'autres type. Parmi toutes les étoiles de notre galaxie, on compte près de 75% de Naines M. Ensuite, ces planètes ont une luminosité stable dans le temps. Leur Zone Habitable est donc plus stable encore que dans notre Système Solaire et la vie (et surtout la vie intelligente) bénéficie en théorie de plus de temps pour se développer.
Si les Naines M sont de bons candidats pour être hôtes de planètes habitables, la proportion de rayonnement UV et X qu'elles émettent (par rapport à leur luminosité totale) est bien plus élevé que le soleil, surtout au début de leur histoire. Intégré sur 5 milliards d'années, il peut être jusqu'à 30 fois plus important pour une Naine M que pour notre étoile.
Les planètes dans la Zone Habitable de Naines M recoivent donc un flux X-UV jusqu'à plusieurs dizaines de fois plus important que sur Terre. Or, c'est justement la partie du spectre stellaire à l'origine de l'échappement atmosphérique.
Il est aussi important de noter que pendant cette phase d'activité initiale accrue des Naines M, d'autres phénomènes comme des éjections de masse coronales ou des éruptions stellaires peuvent affecter lourdement l'évolution de l'atmosphère des planètes environnantes, d'autant plus qu'autour de telles étoiles, les planètes habitables sont beaucoup plus proches et donc affectées par de tels évènements.
Les Naines M sont les étoiles de la Séquence Principale qui possèdent la température de brillance la plus faible. Du coup, le pic de leur spectre d'émission est décalé, par rapport au Soleil par exemple, vers des longueurs d'onde plus élevées. A ces longueurs d'onde, la diffusion Rayleigh de l'atmosphère est moins efficace et l'absorption de la vapeur d'eau (et d'autres gaz à effet de serre comme le CO) est accrue. Dans ces conditions, les planètes qui ont une atmosphère semblable à la Terre seront plus facilement chauffées autour d'étoiles de faible masse. Ceci a pour effet de décaler légèrement vers l'extérieur les deux limites de la Zone Habitable des étoiles de faible masse.
De plus, autour des étoiles M, le mécanisme de "Runaway Glaciation" décrit plus tôt est beaucoup moins efficace que sur Terre car l'albédo de la glace/neige y est réduit. L'albédo spectral de la glace/neige décroît avec la longueur d'onde et le pic d'émission d'une Naine M est décalé, par rapport au Soleil, vers les grandes longueurs d'onde. Ceci résulte en un albédo équivalent de la glace/neige plus faible que sur Terre.
Les planètes dans la Zone Habitable des étoiles M sont très proches de leur étoile. La proportion de planètes en rotation synchrone autour de telles étoiles sera donc à priori plus grande qu'autour d'étoiles de type solaire. En considérant à la fois l'effet des marées gravitationnelles et thermiques , prenons le cas d'une Naine M de 0,3 masse solaire. Une planète semblable à la Terre (pression de surface de 1 bar) qui serait dans la Zone Habitable d'une telle étoile pourrait être aussi bien synchrone que non-synchrone ...
Difficulté : ☆ Temps : 5 minutes
Les étoiles de la Séquence Principale dont la masse est supérieure à celle du Soleil ne sont pas très nombreuses. Elles peuvent héberger des planètes comme n'importe quelle autre étoile. Mais à priori, ce sont de très mauvais candidats pour héberger des planètes habitables ...
Qu'est ce qui limite l'habitabilité des étoiles massives ?
Certaines étoiles sont trop peu massives au moment de leur formation pour permettre à leur coeur d'atteindre la température de fusion thermonucléaire de l'hydrogène. Si leur masse est supérieure à environ 13 fois la masse de Jupiter, elle peuvent néanmoins être chauffé par la fusion du deuterieum. Ces étoiles avortées sont des Naines Brunes. C'est généralement le cas pour les étoiles de masse < . Aujourd'hui, près de 1300 Naines Brunes ont déjà été détectées mais on estime que notre galaxie compte environ 1 Naine Brune pour 6 étoiles.
A la différence des étoiles de la Séquence Principale, la luminosité d'une naine brune décroît avec le temps. La zone habitable autour d'une Naine Brune se déplace vers l'intérieur du système avec le temps.
Comme la luminosité d'une Naine Brune diminue très rapidement, la Zone Habitable se déplace très rapidement vers l'intérieur. La durée de vie dans la Zone Habitable des planètes, immobiles elles, est très courte.
De plus, lorsqu'une planète entre dans la Zone Habitable, elle aura été été auparavant très chaude. La totalité de son eau disponible en surface aura été sous forme de vapeur depuis sa formation. Et cette eau est susceptible de s'être échappée dans l'espace ...
Ainsi, plus une planète entre tard dans la Zone Habitable, plus elle y restera longtemps, mais plus aussi elle sera resté dans un état chaud auparavant ...
On pourra quand même noter que pour l'instant, il n'existe pas d'observations des émissions UV/X de naines brunes. Il est donc délicat d'estimer le taux d'échappement en eau des planètes avant d'entrer dans la Zone Habitable.
Les planètes dans la Zone Habitable d'une Naine Brune sont extrêmements proches de leur étoile. Par exemple, dans le cas d'une Naine Brune "classique" de 0.04 masses solaires, seules les planètes situées à une distance inférieure à ~0.003 U.A. sont continuement dans la Zone Habitable pour au moins ~4 milliards d'années. Parmis ces planètes, celles qui sont situées à une distance inférieure à 0.002 U.A. sont en deçà de la limite de Roche, distance critique à partir de laquelle les forces de marée exercées par l'étoile sur la planète dominent les forces de cohésion de la planète. Résultat : De telles planètes se disloquent.
Ainsi, si une planète semblable à la Terre orbite suffisamment longtemps (et pas trop près !) dans la Zone Habitable d'une Naine Brune, elle sera vraisemblablement en rotation synchrone.
Grâce à l'accumulation de près de 20 ans d'observations d'exoplanètes, il est aujourd'hui possible d'estimer plusieurs termes de la fameuse équation de Drake, équation qui tente d'évaluer simplement la probabilité que nous aurions à communiquer avec d'autres civilisations dans notre galaxie. Le premier terme de l'équation - taux de formation d'étoiles dans la galaxie - est pour l'instant le mieux contraint (~10 étoiles/an). Il est possible en réalisant des statistiques sur les observations faites d'exoplanètes d'évaluer (au moins au premier ordre) la proportion d'étoiles ayant un système planétaire, et il apparaît aujourd'hui en effet que la présence de planètes autour d'une étoile semble être bien plus la règle que l'exception. Par exemple, en utilisant l'ensemble des observations réalisées par la méthode des vitesses radiales, il a été estimé (Howard, 2010) que près de 23% des étoiles devraient posséder une planète de taille similaire à la Terre (entre 0.5 et 2 masses terrestres) et qu'autour d'environ 50% des étoiles M (Bonfils, 2013) orbiteraient des planètes telluriques (de 1 à 10 masses terrestres).
Un certain nombre de systèmes planétaires aujourd'hui détectés pourraient possiblement héberger des planètes rocheuses (< 10 masses terrestres) situées dans la Zone Habitable de leur étoile. C'est le cas de HD85512b, Gliese 667Cc, HD40307g, Kepler-22b ... Parmi toutes ces planètes, quelle fraction est adaptée à l'apparition et au développement de la vie telle que nous pouvons l'imaginer ? L'estimation des quatrièmes et cinquièmes termes de l'équation de Drake nécessite de répondre à cette question.
Dans les années 1960, des scientifiques américains se lancent dans un grand projet : rechercher des signaux artificiels d'origine cosmique. Une des manières les plus efficaces (à notre connaissance) pour communiquer à longue distance est d'utiliser les ondes radio (faible absorption atmosphérique, peu énergétiques, ...). Les scientifiques du projet SETI ( Search for ExtraTerrestrial Intelligence) se mettent alors en tête d'utiliser des radiotélescopes pour observer le ciel à la recherche de signaux extraterrestres. Mais 50 ans plus tard, aucune observation fructueuse n'a été réalisée ...
Le lancement du satellite Kepler en 2009 révèle la présence d'un grand nombre de systèmes multiplanétaires (près de 500 à la date du 1er Janvier 2016). Il est maintenant possible de connaître la position relative des différentes exoplanètes d'un même système planétaire au cours du temps, et donc de savoir à quel moment deux planètes d'un même système planétaire sont alignées avec la Terre. Dans ces conditions particulières, il est possible d'"intercepter" une communication focalisée d'une planète à l'autre ... Les scientifiques du projet SETI se servent aujourd'hui de ces informations pour pointer avec plus de pertinence leur radiotélescopes. Affaire à suivre ...
Une manière probablement plus scientifique et moins hasardeuse de détecter des planètes habitées est de s'intéresser à l'ensemble des planètes où la vie aurait pu un jour apparaître et de répondre aux questions suivantes : 1. Comment la vie peut-elle modifier son environnement (atmosphère, surface, ...) ? 2. Ces changements peuvent-ils être observés depuis la Terre ?
Pour détecter la présence d'une espèce chimique à la surface ou dans l'atmosphère d'une exoplanète, il convient de réaliser un spectre en absorption, en émission ou en réflexion de la planète. En 1993, l'équipe de Carl Sagan décide d'utiliser cette technique en pointant la sonde Galileo (alors en chemin vers Jupiter) vers la Terre à la recherche de signatures éventuelles de la vie. Ils conclurent alors que la présence simultanée de dioxygène en grande quantité et de méthane est un signe d'activités biologiques. Sur Terre, le dioxygène (~21% de la composition atmosphérique) est essentiellement le produit de la photosynthèse. Les cyanobactéries et les plantes sont les principaux responsables de la production d', utilisant les photons émis par le Soleil pour former à partir du et de l'eau des molécules organiques. Le méthane produit sur Terre a lui aussi une origine essentiellement biologique. C'est la combinaison de méthane (gaz réducteur) et de dioxygène(gaz oxydant), situation chimiquement instable, qui témoigne de la production simultanée de ces deux gaz, caractéristique d'une activité biologique.
Note : L'ammoniac , produit également de manière biologique (et dans les mêmes proportions), pourrait jouer un rôle (gaz réducteur) similaire à celui du méthane. Néanmoins, l'ammoniac est présent en très faible quantité dans l'atmosphère terrestre car il est facilement photodissocié par le flux UV. Il existe d'ailleurs un certain nombre d'autres "biomarqueurs" de l'activité biologique terrestre comme les oxydes d'azote (), les chlorofluorocarbures (gaz CFC) ... mais qui sont (pour un certain nombre de raisons) à priori présents en trop faibles quantités pour être détectés dans les années à venir par des techniques de spectroscopie.
On notera enfin qu'il existe un certain nombre de processus abiotiques (e.g. non-biologiques) qui dépendent d'un grand nombre de paramètres et qui sont susceptibles de biaiser la présence de tel ou tel biomarqueur. Finalement, c'est surtout le déséquilibre chimique dans l'atmosphère (présence de l'oxydant et du réducteur sur Terre) qui semble être un bon indicateur de présence de vie.
Les planètes effectivement habitées ne représentent (à priori) qu'une fraction des planètes habitables. Comment peut-on observer de l'eau liquide à la surface d'une exoplanète ?
Dans les décennies à venir, il semble raisonnable d'espérer que les premières observations spectroscopiques de planètes telluriques dans la Zone Habitable seront réalisées. Il sera alors possible d'y confronter les notions présentées dans ce cours et ainsi très probablement de les mettre à jour ...
pages_habitabilite/emballement.html
Il y a 1,4 . 1021kg d'eau à la surface de la Terre.
La relation entre la pression atmosphérique et la masse de l'atmosphère peut se déduire de la loi fondamentale de la statique des fluides : .
On peut faire l'hypothèse (simpliste) que la capacité thermique massique de la vapeur d'eau est constante et vaut .
La chaleur latente de vaporisation de l'eau à Celsius est d'environ .
Question 1: On fera l'hypothèse que le Runaway Greenhouse est initié à partir de 0.95 Unités Astronomiques.
Question 2: On pourra estimer le temps nécessaire pour que la planète ait accumulé un surplus de flux solaire (par rapport au flux critique du Runaway Greenhouse) suffisant pour passer d'un état d'équilibre (entrée du Runaway) à un autre (sortie du Runaway). On pourra de ce fait utiliser la différence d'énergie (entre les deux états d'équilibre) calculée dans la question précédente.
On pourra faire l'hypothèse que la densité moyenne des couches chauffables (, soit essentiellement la croûte et la lithosphère) est de l'ordre de , et que leur capacité calorifique moyenne est de l'ordre de .
pages_habitabilite/moist.html
On pourra utiliser le taux d'échappement exprimé en moles/seconde.
On rappelle qu'il y a 1,4 . 1021kg d'eau à la surface de la Terre.
On pourra utiliser le rapport de mélange de vapeur d'eau dans la stratosphère issu du profil vertical de vapeur d'eau (figure -- 0.99 AU).
Le profil de vapeur d'eau à 0.95 UA (modèle 3D) correspond au dernier état d'équilibre de la Terre avant de passer en Runaway Greenhouse.
La stratosphère de la Terre à 0.95 UA (modèle 3D) est située au delà de 80 km comme l'indique le profil de vapeur d'eau.
pages_habitabilite/lowmass.html
Estimez la durée de vie de telles étoiles. On pourra utiliser cette courbe.