Décrire

Auteur: Jean-Yves Chaufray

Introduction

Les luminescences atmosphériques sont des émissions lumineuses émises par les atmosphères planétaires. Elles sont produites par les espèces atomiques et moléculaires de l'atmosphère de la planète se trouvant dans des états de haute énergie (états excités) qui en redescendant vers un état de basse énergie émettent des photons.

Pour produire ce type d’émission il est donc nécessaire d’exciter les espèces atmosphériques le plus souvent par interaction avec un photon ou un électron. Les luminescences atmosphériques (appelées airglow) produites dans les hautes atmosphères planétaires (thermosphère/exosphère) peuvent généralement être classées en trois catégories :

Les émissions appelées « dayglow ». Le « dayglow » est l’émission de l’atmosphère de jour qui résulte de l’interaction du rayonnement solaire avec les gaz atmosphériques. Par définition, le « dayglow » inclus aussi les émissions produites par interactions entre les gaz atmosphériques et les photoélectrons, c’est à dire les électrons produits par la photoionisation de l’atmosphère de la planète.

Les émissions appelées « nightglow » qui sont les émissions luminescentes produites du côté nuit. Les réactions chimiluminescentes telles que les réactions de recombinaison entre deux atomes produisent des molécules dans des états excités à l'origine des émissions de type « nightglow » dans les hautes atmosphères planétaires.

Les émissions aurorales qui peuvent être définies comme les émissions résultant de l’impact de particules énergétiques autres que les photoélectrons, comme par exemple lors de précipitations d’électrons énergétiques de la magnétosphère terrestre dans les régions polaires.

L’énergie perdue par l’atmosphère sous forme de luminescences atmosphériques ne représente qu’une fraction minime de l’énergie absorbée par l’atmosphère. Une partie de l’énergie absorbée est aussi transformée en énergie thermique (chauffage) et énergie cinétique (dynamique).


Emission Lyman-alpha de l'hydrogène atomique

Avant de voir en détails les principaux mécanismes d ’émissions, voici quelques exemples d’émissions observées dans l’UV et le visible sur différents objets du système solaire

definitionEmission Lyman-alpha de l'hydrogène atomique

A cause de la gravité, les espèces légères, comme l’hydrogène atomique deviennent les principaux composants des très hautes atmosphères (exosphère) des planètes. L’hydrogène atomique peut diffuser de façon efficace le rayonnement solaire et former une couronne lumineuse en UV autour de la planète. Cette émission a été observée pour la première fois autour de la Terre à la fin des années 50. Elle avait d’abord été interprétée comme la diffusion du rayonnement solaire par les atomes d’hydrogène du milieu interplanétaire avant d’être interprétée comme l’émission d’atomes d’hydrogène liée gravitationnellement à la Terre et formant autour d’elle une « géocouronne ». Des couronnes similaires ont été mises en évidence autour de toutes les planètes du système solaire (Mercure, Vénus, Mars, Jupiter, Saturne, Uranus, Neptune) , de certains satellites (Titan, ...)et des comètes. Des tentatives d’observations par la sonde Rosetta n’ont pas permis de mettre en évidence une « couronne » d’hydrogène autour des astéroïdes Lutetia et Steins. La couronne d’une planète pouvant s’étendre sur plusieurs rayons planétaires, cette émission peut être observée côté jour et côté nuit. D’autres espèces comme l’hélium ou l’oxygène atomique conduisent à des émissions exosphériques observables en UV.

Le milieu interplanétaire composé essentiellement d’hydrogène atomique produit lui aussi une émission par diffusion du rayonnement solaire et la première carte complète de l’émission de l’hydrogène interplanétaire vue depuis la Terre a été effectuée par le satellite OGO-5.


Dayglow et Nightglow

Emissions dayglow des planètes telluriques

L’atmosphère de la Terre est composée essentiellement de N2 et de O2. Les principales émissions UV observées dans la thermosphère de la Terre côté jour sont des émissions produites par O, O+, N+, N2 et NO. Sur Mars et Vénus, l’atmosphère est essentiellement composée de CO2 et les principales émissions observées en UV côté jour sont les mêmes et sont produites par CO, CO2+ et O. Ces émissions résultent de différent processus induit par le rayonnement solaire qui seront décrites en détails dans la partie Comprendre.

Emissions nightglow des planètes telluriques

Sur Mars et Vénus et la Terre, des bandes d’émissions UV de NO sont visibles du côté nuit, à ces bande d’émissions, s’ajoutent des bandes d’émissions de O2 sur la Terre. Ces émissions sont produites par des réactions chimiques de recombinaison (chimiluminescence) entre des atomes d’azote et des atomes d’oxygène. Ces atomes sont produits par la photodissociation de CO2 et N2 du côté et transporté par les vents vers la nuit où ils peuvent se recombiner.


Emissions aurorales

Généralités

Les émissions aurorales sont des émissions produites par interaction entre des particules très énergétiques (le plus souvent des électrons) provenant de l’environnement spatial voisin de la planète (magnétosphère par exemple) et les composés de l’atmosphère de la planète. Les émissions aurorales peuvent être observées dans toutes les gammes spectrales du spectre électromagnétique : des rayons gammas au émissions radios. Dans ce cours on se limitera aux émissions UV-visible. L’excitation peut être directement produite par la particule énergétique incidente ou produite par une cascade de collisions dans l’atmosphère. Des émissions aurorales ont été observées sur la Terre et les quatre planètes géantes du système solaire. Des émissions aurorales ont aussi été observées sur Vénus, Mars et sur certains satellites galiléens (Ganymède, Io, Europe).

Emissions aurorales terrestres

Les principales émissions aurorales visibles observées sur Terre sont les raies vertes et rouges de l’oxygène atomique. Les observations des émissions aurorales en UV montrent un spectre riche en raies principalement associées à N, O, N+, O+, N2. Ces émissions sont observées aux hautes latitudes, au voisinage des pôles magnétiques, où les électrons accélérés dans la magnétosphère de la Terre peuvent précipiter dans l’atmosphère le long des lignes de champs magnétique.

Emissions aurorales des planètes géantes

Les émissions aurorales observées sur les planètes géantes sont aussi principalement produites par des précipitations d’électrons magnétosphériques près des pôles magnétiques. Les émissions UV sont dominées par les émissions de H et H2. La morphologie des émissions aurorales sur Jupiter et Saturne montrent différentes structures qui seront présentées dans la suite de ce cours. Les émissions aurorales UV des géantes glacées Neptune et Uranus ont été observées pour la première fois par la sonde Voyager 2.