Le flux thermique

Auteurs: Loïc Rossi, Emmanuel Marcq

Analyse de composition atmosphérique

L'analyse du spectre thermique permet d'identifier divers composés (surtout atmosphériques) de par la présence de bandes ou de raies spectrales caractéristiques d'une espèce chimique.

Système solaire

Les spectres thermiques en provenance des planètes du système solaire nous renseignement notamment sur :

Notons que ces mêmes techniques sont également utilisées depuis l'orbite terrestre pour des mesures satellitaires de composition atmosphérique, notamment pour des mesures météorologiques (nuages, vapeur d'eau) ou climatologiques (CO2).

Spectres thermiques telluriques
Thermal_IR_Venus_Earth_Mars.png
Spectres des trois principales planètes telluriques connues dans l'infrarouge thermique. Les composés gazeux responsables des structures observées sont indiqués.
Crédit : NASA GSFC (Hanel et al.)
Images IR thermiques de la Terre
earth_IRmerge.png
À gauche : image Météosat dans le canal 10,5-12,5 µm (fenêtre de transparence atmosphérique). À droite : image Météosat dans le canal 5,7-7,1 µm (zone d'opacité de H2O)

Exoplanètes

Les spectres thermiques d'exoplanètes que nous sommes en mesure d'observer sont évidemment de bien moins bonne qualité que pour les objets du système solaire. Ils ne sont pas résolus spatialement (aspect ponctuel des exoplanètes), et sont en général de résolution spectrale assez faible (car on ne peut se permettre de trop disperser spectralement un flux reçu qui est en général très faible). Nous disposons néanmoins à ce jour des connaissances suivantes :


Analyse du profil thermique

Lorsque la composition de l'atmosphère est connue, la forme exacte des raies spectrales vues dans le spectre thermique peut donner à l'observateur des renseignements sur la température du milieu responsable de l'émission thermique (que ce soit la surface ou l'atmosphère). Ainsi, une atmosphère où le profil thermique décroît avec l'altitude présentera des raies en absorption, tandis qu'une atmosphère où la température croît avec l'altitude (une stratosphère, donc) présentera des raies d'émission. Une explication plus détaillée est disponible ici.

L'utilisation de ces spectres pour la mesure du profil thermique n'est possible que dans une plage limitée d'altitude selon la raie observée. Elle nécessite également un gaz dont le profil vertical d'abondance est bien connu dans l'atmosphère : c'est le cas de CO2 sur Mars et la Terre par exemple. Il est hélas impossible de se livrer à la fois à des mesures de profils de composition et de température simultanément...

Spectre thermique de Mars
mariner_mars.jpg
Spectres thermiques enregistrés par la sonde Mariner 9 en orbite autour de Mars. Le profil thermique est décroissant avec l'altitude dans les moyennes latitudes, mais croissant au pôle sud comme le montre la bande de CO2 tantôt en absorption ou en émission.
Crédit : Tiré de Hanel et al. (1972)

Exoplanètes

L'observation indirecte (par différence avec le spectre stellaire pur observable lors d'un transit secondaire) du flux thermique émis par des exoplanètes géantes permet, moyennant des hypothèses raisonnables sur leur composition, d'estimer la température des couches atmosphériques émettrices. Cependant, la faiblesse du signal impose une résolution spectale très faible, hélas insuffisante pour dériver un véritable profil vertical de température.